
Routing protocols exploiting queue information for
deterministic networks

Jakob Miserez∗, Gourav Prateek Sharma†, Wouter Tavernier∗
∗IDLab, Department of Information Technology, UGent - IMEC

{jakob.miserez,wouter.tavernier}@UGent.be
†EECS, KTH Royal Institute of Technology

{gpsharma@kth.se}

Abstract—Time-Sensitive Networking (TSN) provides mecha-
nisms for strictly controlling network latency, jitter, and packet
loss in LAN environments. These technologies enable various
applications, including industrial automation and professional
audio/video bridging. Current TSN network architectures heavily
rely on a centralized control model inspired by Software-Defined
Networking (SDN). While this approach works well for small-
scale L2 TSN networks, it is not feasible for larger-scale L3
deterministic networks involving multiple network segments and
routers. This paper proposes and evaluates distributed mech-
anisms for Deterministic Networking (DetNet) that enable: i)
the discovery of priority queue information using a link-state
protocol or an exploration-based approach, ii) the planning
of network paths using network calculus based on available
queue information, and iii) a distributed signaling mechanism
for configuring the data plane of the deterministic network.
Simulations demonstrate the potential of these protocols in large-
scale networks and validate their bounded delay and packet loss.

Index Terms—Deterministic networking, routing protocols,
Quality-of-Service, QoS, real-time applications

I. INTRODUCTION

Traditional IP-based networks provide best-effort end-to-
end connectivity to their users. In practice, this leads to end-to-
end latencies which are at best in the order of tens of millisec-
onds [1]. In addition, no guarantees are made regarding packet
loss, jitter, or throughput. While this is acceptable for tradi-
tional Internet applications, critical applications that demand
such guarantees cannot be trusted to those networks. Examples
of such critical applications include industrial applications, the
tactile Internet, and the one-way fronthaul in wireless cellular
networks, which require worst-case latencies of respectively
a few milliseconds, 1 ms, and in the order of 100 µs [1].
Time-Sensitive Networking (TSN) technologies and mecha-
nisms have been proposed in L2 networks to accommodate
such tight latency requirements. As documented in section II,
existing TSN work focuses on LAN environments involving
different data plane shapers, flow control mechanisms, and
scheduling in the context of a control architecture that relies
on a Centralized Network Controller (CNC), which is respon-
sible for discovering each node’s queue status, scheduling
TSN paths and instructing the data plane nodes. Although

a centralized control architecture might be suitable for L2
TSN networks with relatively small scale, such an approach
is less feasible over multiple L2 bridged and L3 routed
segments. A scalable control architecture suggests a more
distributed approach where all nodes are jointly responsible
for: i) setting up the control network, ii) disseminating node-
level routing/queue information, and iii) participating in the
calculation, scheduling and signaling of time-sensitive paths
satisfying latency, bandwidth, and packet loss requirements.
Such an architecture aims to reduce signaling overhead and
the dependency on a single CNC, which has the possibility
to become either a performance bottleneck or the target of a
hardware failure or attack. This paper aims to investigate an
alternative distributed routing approach enabling determinis-
tic networking by exploiting fine-grained queue information,
proposing three novel distributed routing schemes that build
on top of related work in link-state routing, network calculus,
and exploration-based routing protocols.
The remainder of this paper is organized as follows. Section
II provides an overview of related work that inspired the
contributions of this paper. Section III describes the basic
building blocks of the protocols, after which the proposed
protocols are explained in sections IV and V. The simulation
setup is presented in section VI followed by the evaluation of
the protocols. Finally, this paper is concluded in section VII,
where a few pointers for future work are presented.

II. RELATED WORK

Van Bemten et al. [2] proposed Chameleon, a demand-
aware cloud network that provides predictable latency and high
utilization in multi-tenant datacenters. Chameleon builds on
network calculus [3] to compute worst-case delay and memory
bounds, and the queue-level topology, which is a network
abstraction that explicitly accounts for priority queueing in
an output port. Building on the observation that packets going
through queues of different priority experience vastly different
delays, a physical link is now abstracted to several virtual
links, one for each queue. Every virtual link is assigned a
worst-case queueing delay, i.e., a budget, with higher priority
queues having lower budgets. Chameleon is implemented
using a logically centralized controller. Whenever a new flow
is requested, a feasible path is computed using the LARAC
algorithm [4]. An admission control component based on978-1-6654-7598-3/23/$31.00 ©2023 IEEE

Fig. 1: An illustration showing a network and its queue-level
representation [2].

network calculus within the path computation makes sure that
a flow is never embedded in a queue such that it would violate
the queue’s delay budget or the budgets of lower priority
queues. The buffer requirements are also taken into account.
Chameleon comes with a reconfiguration system, which can
re-embed flows to make place for other flows if necessary.
The queue-level topology allows Chameleon to perform fine-
grained routing while guaranteeing bounded delay, bandwidth,
and packet delivery to applications.
Time-Sensitive Networking (TSN) is a set of networking
technologies and standards that are designed to ensure that
time-critical data is transmitted reliably and with predictable
latency over switched Ethernet networks [1]. TSN is stan-
dardized in the IEEE 802.1 TSN task group and includes
features such as time synchronization, traffic shaping, filtering
and policing mechanisms, and path selection and network
traffic scheduling algorithms, which all help to ensure that
time-critical data is transmitted reliably and efficiently over
the network. For example, the Time-Aware Shaper (TAS), as
standardized in IEEE 802.1Qbv, relies on controlled gates to
explicitly open and block queues for transmission on periodic
timescales of the order of tens to hundreds of nanoseconds.
The TAS is one of the primary vehicles to protect scheduled
traffic from other traffic in given nodes to bound its queueing
delay. Time-triggered or scheduled traffic refers to periodic
data streams with real-time requirements that are known in
advance. Synchronization between nodes is provided through
the Precision Time Protocol (PTP) protocol. Based on these
requirements and the network topology, the CNC generates
the periodic schedule for all switches. Once the schedule is
generated, the CNC provides the individual switches with their
shaping configuration. An extensive survey of the current state-
of-the-art of TSN focusing on URLLC applications is given
in [1]. A significant amount of TSN research has focused on
the design of efficient scheduling mechanisms [5].

Whereas TSN technologies and standards focus on provid-
ing network guarantees in L2 LAN environments, the need
for more deterministic networking in larger-scale routed L3
networks is acknowledged by the IETF deterministic net-
working (DetNet) working group. There is a wide range of
applications ranging from Industrial Automation and Control
Systems (IACSs) to electrical utilities [6] with strong and
relatively similar needs for deterministic network services
in larger-scale L3 routed networks. Such environments pose
additional challenges beyond those targeted in traditional TSN
standards, in particular regarding scalability, routing, path
distribution, and signaling [6]. An IETF DetNet draft [7] is

currently being developed to outline a more scalable control
framework for larger-scale L3 networks. Initial assessments
acknowledge scalability issues with SDN-focused architec-
tures and see potential in the reuse of existing L3 routing
protocols, such as OSPF-TE, and signaling protocols such
as RSVP-TE. However, none of these protocols are currently
aware of the fine-grained queue information, as required for
time-sensitive applications. The remainder of this section gives
a brief overview of relevant extensions of routing protocols to
enhance the discovery and signaling of QoS parameters in L3
networks.
Guerin et al. [8] proposed path selection algorithms for QoS
routes as extensions to the OSPFv2 protocol, focusing mainly
on bandwidth requirements. One of the proposed path selection
algorithms computes QoS paths on demand; the details are
omitted here. However, this algorithm implies that every router
should have an up-to-date view of the network, i.e., every
router should know the available bandwidth of every link. Be-
cause continuously distributing this information is expensive,
and periodic updates might result in missing important changes
between update periods, a hybrid approach is presented, com-
bining time-based (periodic) updates with event-based updates.
Event-based updates are distributed immediately whenever the
change (since the last update) of the available link bandwidth
exceeds a certain threshold. The distribution of updates fits
perfectly within the OSPF-TE extensions [9], which use
opaque LSAs to distribute additional information.
Song et al. [10] proposed a flood-and-prune ’exploration’ QoS
routing protocol. This protocol finds feasible paths in the net-
work in parallel by flooding a probe (connection request) and
reserving resources at intermediate nodes. Before reserving
resources at an output port and forwarding the probe, a QoS
admission test is performed first. For example, if a probe
carries a bandwidth requirement, it will only be forwarded
through ports that have enough unreserved bandwidth. In
addition to probes, two other types of packets are used:
confirmation packets, which signal that a feasible path is
found, and prune packets, which signal that no feasible path
could be found. Both of these can be seen as a reply to a probe.
The following rules capture the full working of the protocol:

1) A probe is forwarded through ports where the QoS
admission test succeeds. A probe is never sent through
the port from which it came (upstream).

2) When a probe reaches its destination, a confirmation
packet is sent back.

3) When a confirmation packet is received at a node, it frees
all unnecessary allocated resources at the other output
ports. The confirmation packet is sent further upstream
until the first node is reached.

4) If all output ports fail the QoS admission test, then a
prune packet is sent back upstream.

5) If a node receives a prune, it frees the allocated resources
at that port. If a node received a prune for all probes that
it sent out, then it sends a prune packet upstream.

The main problem of this protocol is over-reservation due to

flooding. Therefore, it is extended with a fast-prune mech-
anism, which allows freeing resources faster, and works as
follows:

• If a probe is not the first to arrive at a node, a prune is
sent back immediately.

• When a confirmation packet is received at a node, a
prune-forward packet is sent through every port where
a response was not yet received.

• When a prune-forward packet is received, all resources
are cleared and it is forwarded again through every port
where a response was not yet received.

III. BUILDING BLOCKS

The route discovery protocols proposed in sections IV and
V rely on common building blocks to guarantee delay and to
ensure that the control traffic itself receives sufficient resources
to enable adequate operation. This functionality is briefly
described below.

A. Delay guarantees
The routing protocols are based on delay budgeting mech-

anisms used in Chameleon to guarantee worst-case delays.
Every queue-level topology link is therefore assigned a budget,
such that the worst-case delay dl of a queue-level topology link
l is now given by the sum of its budget and the propagation
delay of the corresponding physical link. The worst-case (end-
to-end) delay of a path of queue-level topology links is then
simply computed as the sum of the worst-case delays of the
links.

To keep the actual worst-case queueing delays below their
budgets, some form of admission control and resource reser-
vation is needed. Network calculus is used to keep track of
the reserved resources via affine arrival curves (which model
incoming traffic) and service curves (which model the link
service), allowing it to compute worst-case queueing delays at
every queue. By keeping these delays below their budgets at
every queue, the queueing delays are effectively bounded.

A flow is characterized by a delay requirement df and an
affine arrival curve, consisting of a burst and rate parameter.
Per network calculus, the arrival curve of a flow changes after
it is embedded in a queue, i.e., its burst increases. The exact
formula to compute this burst increase can be found in [3].

B. Control channel
In a centralized context such as in [2], the control traffic

does not influence the critical data. However, this is not the
case in a distributed setting, where control traffic and data
traffic use the same links, therefore influencing each other.
This is why the routing protocols in this paper make use of
an additional mechanism to overcome the problem of control
traffic overhead. In particular, a limited amount of resources
(burst and rate) will be reserved at every physical link between
two routers at all times for the control traffic itself. This can
be seen as a special flow: the control flow. By allocating the
control flow to the highest-priority queue, the exchange of
control messages (either for discovery or signaling) will not
be hampered by congested data channels.

IV. EXPLORATION-BASED QOS ROUTING PROTOCOLS

The basic principles of the exploration-based protocols
presented in this section are based on the ideas of the flood-
and-prune protocol in [10]. The difference is that resources for
a flow are now reserved at a queue-level topology link, i.e.,
a queue, instead of at an output port. Thus, a QoS admission
test will be performed on every queue-level topology link upon
receiving a probe. The probes now carry flow parameters in the
form of a delay requirement df , and burst and rate parameters.

Because an exploration-based protocol is only concerned
with finding QoS paths, it is employed on top of a standard,
non-QoS routing protocol such as OSPF. This protocol exposes
information about the network, which can guide the explo-
ration process. Useful information includes the distance to the
destination hop, which will be used to prune paths and in the
admission test.

As mentioned before, these protocols suffer from over-
reservation because of their greedy nature. While this might
not be a problem when resources are only reserved after a
full path has been found, it adds extra complexity for certain
edge cases. For example, a situation might arise where a path
is needed for two flows. Under high network contention, two
paths could be found that both make use of the same resources,
such that a potentially inefficient reroute of one of the flows is
needed. Exploration schemes focusing on re-optimizing such
routes are left out for future work.

The remainder of this section describes the unique prop-
erties and innovative elements of the novel exploration-based
protocols of this paper.

A. Path pruning

In large networks, many possible paths from a given source
to a destination node exist. However, because of the problem
of over-reservation, it is a good idea to limit the search space,
such that a probe will only travel through a certain part of
the network. The idea is that if the destination is h0 hops
away from the source (as per the underlying routing protocol),
then the explored paths may not have a length that exceeds
4
3h0+3. This formula is an attempt to limit the search space to
a reasonable size, assuming that longer paths probably waste
too many resources, as the burst increases per hop. The added
constant is used to ensure that there is still a reasonable search
space for nearby destinations, e.g., a single hop away. This
principle can be generalized to arbitrary link costs as well.

B. Admission test

A probe now carries the following additional statistics that
are used by the admission test:

• The accumulated worst-case delay dacc up until this point,
• An initial estimate of h0 hops from the source to the

destination, and
• The hop count h of the path up until the current node.

Based on these statistics, and an additional estimate by the
underlying routing protocol that the destination is only hest

hops away if l is taken, the flow is allowed to be embedded
at the queue-level topology link l if

1) dacc + dl ≤ df , and
2) The flow can be embedded in l, and
3) A prune did not come from the physical link, and
4) h+ hest ≤ 4

3h0 + 3 (path pruning), and
5) The probe did not come through the corresponding

physical link, and
6) The flow is not already embedded in a queue-level

topology link that belongs to the same physical link,
and

7) The protocol chooses to do so.
The first three criteria are self-explanatory: they ensure that
the delay requirement of the flow is respected, that there
are enough resources left on the link, and that probes are
not forwarded through paths that previously proved not to
meet necessary latency requirements, and are likely to fail
again. The fourth and fifth criteria enforce respectively path
pruning and that probes don’t travel in loops. Additionally, the
sixth rule is added to prevent an exponential explosion of the
exploration packets that are sent into the network. Otherwise,
there would be a probe for every possible queue combination
on a single physical path. Finally, the last criterion provides
freedom to the protocol on how to implement the exploration
routine, as the protocol is now not forced to forward probes
via all possible links at the same time. Once a link passes
the admission test, the probe that is sent through it will be
updated, i.e., its accumulated worst-case delay, burst, and hop
count will be updated.

C. Link heuristics

There might be several queue-level topology links belong-
ing to the same physical port that pass the admission test.
However, a flow cannot be embedded at two queue-level
topology links of the same physical output port. Therefore,
a link heuristic is used by the protocol to select one out of
the possible candidates. Several heuristics are proposed in the
following subsections.

1) Random: Select a link randomly, in the hope that there
will be a good balance between low-priority queues and high-
priority queues.

2) Greedy: Always choose the link with the least delay,
this keeps the burst consumption low at intermediate nodes
but could waste resources for flows with stricter delay require-
ments.

3) Honest: Try to keep the delay consumption relatively
equal across all intermediate nodes. For example, for a flow
that has a delay requirement of 32ms, the honest heuristic
will prefer a link with a delay of around 4ms, given that the
accumulated delay is 16ms and the destination is 4 hops away.

D. Reacting to link failures

When a link failure is detected, a path that goes through
that link is cleared, i.e, its resources are freed at every node
from the broken link to the source, and from the broken link
to the destination. This is accomplished by explicitly sending
FREE packets along the path. The rerouting of a flow then
starts at the source node again.

E. Breadth-first exploration

The breadth-first (BF) exploration variant is similar to the
flood-and-prune protocol in [10], which searches all paths in
parallel. An equivalent fast-prune technique is also used to
counter over-reservation.

F. Depth-first exploration

The depth-first (DF) exploration variant will only explore
one path at a time. This means that, upon receiving a probe,
a single link must be chosen out of all possible links, which
could belong to multiple physical ports. Therefore, it uses a
port heuristic first, after which a link heuristic is used to embed
the flow into one of the possible links of the chosen port. The
selected port will be the one with the lowest cost to the final
destination, and which contains at least one link that passes
the admission test.

It is also possible to perform n-DF exploration, where the
best n paths are explored in parallel. This is left for future
work.

V. LINK-STATE QOS ROUTING PROTOCOLS

The central idea of the link-state (LS) QoS routing protocol
is that every router floods messages carrying the state of
given links in the network topology. All routers receive these
messages and collect them into a database that maintains a
global view of the current state of the network. Whereas
typical LS protocols (e.g., OSPF or IS-IS) focus only on
physical topology link states, the considered LS protocols here
also include queue states. This allows every router to compute
a complete feasible path from source to destination on the
queue-level topology upon a flow request. A new type of LSA,
which contains up-to-date queue information, is introduced
for this purpose: QoSLSAs. These are also flooded, such that
every router maintains a QoSLSA database and a queue-level
topology map. Note that these QoSLSAs also fit perfectly
within the OSPF-TE extensions [9].

A. Computing constrained paths

Two algorithms based on Dijkstra’s shortest-path algorithm
[11] are used to compute paths on the queue-level topology
that satisfy the delay constraints of flows. Firstly, simple
paths with minimal delay can be computed, and, secondly,
the LARAC algorithm [4] is also supported. However, these
basic algorithms are slightly adjusted, as the computed path
should have enough free resources. This is accomplished by
keeping track of the flow parameters and updating those after
visiting an edge, and by never visiting an edge if the flow
cannot be embedded there.

B. Distributing queue states

Similar to [8], a hybrid system of event-based and time-
based updates will be employed to make a trade-off between
accuracy and efficiency. In particular, event-based updates will
be distributed if the total allocated bandwidth at a link is more
than 5% of the total link bandwidth since the last update.

The idea of the event-based updates is to account for rapid
and significant changes of the available resources. When flows
use a rather limited amount of resources, the time-based
updates should provide a reasonably accurate view of the
network, while keeping the overhead low. When a certain
flow requires a lot of resources, that assumption is not valid
anymore. The solution is to simply send an extra update.

It is also possible to send an update when the burst
consumption in a queue changes significantly. This however
requires a little more state management and is not yet incor-
porated into the protocols to keep the implementation simple.

C. Embedding flows

Due to the unavoidable inaccuracies of the queue-level
topology map, a router might try to embed a flow in a path
using resources that are already gone. Therefore, it needs to be
checked at every intermediate router if the resources are still
available. This is accomplished via forwarding an EMBED
packet along the path, which contains the flow parameters and
the full path. The situation where a flow cannot be embedded
because of these inaccuracies is called a ’collision’. If such
a collision occurs, it is signaled back to the source router,
which may opt to compute a new path and try again. The
router at which the collision took place will also send out
a new QoSLSA, such that a collision is now less likely to
happen at this node. When no collisions occurred up to the
destination router, a confirmation is signaled back to the first
router. When this confirmation reaches the source, the critical
traffic is allowed to be sent out.

D. Reacting to link failures

Routers can detect link failures implicitly via standard
LSAs. Because every router has full knowledge of all paths of
the flows passing through it, resources can be freed immedi-
ately at intermediate nodes. When the first router in a path for
a flow detects a link failure on the path, it will try to re-embed
the flow.

VI. EVALUATIONS

A. Simulation setup

The evaluation of the protocols is carried out in the simu-
lation environment OMNeT++ [12] (v5.6.2), extended with a
modified version of the INET framework [13]. Both this mod-
ified version and the protocol implementations are available as
open source [14] [15]. All of the experiments were performed
on a laptop with an Intel core i7 7500u processor and 8 GB
RAM running on Ubuntu 20.04. All simulation experiments,
except if stated otherwise, are performed on the large-scale
COST266 network [16], which consists of 37 routers and 57
two-way links that span a large part of Europe. All links have
a bandwidth of 1Gbps, and all routers have 8 priority queues
for QoS traffic, with a buffer of 97 kB per priority queue. The
budgets of the 8 queues are fixed at respectively 0.1 ms, 0.5
ms, 1 ms, 2 ms, 4 ms, 8 ms, 16 ms, and 32 ms. These are
based on the budgets in [2], and the idea is that they cover both

Application Deadline Burst Rate
Database [80-120] ms [100-400] B [300-550] Kbps
SCADA [150-200] ms [100-400] B [150-550] Kbps
Production [10-20] ms [100-400] B [100-500] Kbps
Control [10-20] ms [80-120] B [1-100] Kbps
Video [50-200] ms [140-1800] B [4-16] Mbps
Random [10-200] ms [100-3000] B [0.1-16] Mbps

TABLE I: The list of applications used for the evaluation of
the proposed protocols.

end-to-end delay requirements of around a few milliseconds
to a few hundred milliseconds (delay diversity).

The simulations make use of a flow requester. This is a
simulation tool that will set up new flows into the network,
i.e., it creates new applications that will send a flow request
to their access router to establish a path. Tab. I, which is
based on the applications in [2], depicts the different types of
applications and their characteristics. Whenever a new appli-
cation is created, its type and characteristics will be generated
randomly using this table. The source and destination host are
also chosen using a uniform random distribution, and the flow
requester will create new applications at a rate of 10 flows per
10 ms, which corresponds to a rate of 1000 flows per second.

B. Network utilization

The network utilization of the critical traffic is measured
by the total bandwidth that is allocated to it, divided by
the sum of the bandwidth of all links in the network. This
experiment takes 60 s, during which the flow requester creates
new applications demanding a flow, and it is repeated 10 times
to be statistically representative.

Network utilization is an interesting performance metric
because it reflects the efficiency of the protocols regarding
pathfinding. As mentioned earlier, the admission control com-
ponent will make sure that flows are allowed to be embedded
in a queue only if there are enough resources left. Thus, the
more bandwidth a protocol can allocate to critical traffic, the
more efficiently it uses the queue resources, resulting in more
critical traffic that can flow through the network.

For the exploration protocols in Fig. 2a and 2b, it is im-
mediately clear that the greedy link heuristic outperforms the
others. This can be explained by the fact that choosing a low-
delay link will keep the burst consumption low at intermediate
nodes, therefore leaving more resources open for future flows.
For the LS QoS protocols, Fig. 2c illustrates that the min-
delay algorithm outperforms the LARAC algorithm. Similarly,
the min-delay algorithm will keep the burst consumption low
in the intermediate nodes, while the LARAC algorithm might
differ from this.

C. Delay and reliability

The delay and reliability guarantees of all protocols build
on the same foundations and are evaluated as follows. Flows
are created in the network for a duration of 60 s, and they
are embedded using the LS min-delay protocol. Based on the
results of section VI-B, most of the available resources will be
allocated to critical traffic after 60 s, i.e., network contention

(a) BF exploration protocol

(b) DF exploration protocol

(c) LS QoS protocol

Fig. 2: Experimental results comparing network utilization for
different protocols.

Fig. 3: Experienced end-to-end delay consumption range and
mean

Fig. 4: Experienced worst-case queueing delays, ordered from
high priority (QO) to low priority (Q7)

will be high. After this initial period, each of the accepted
flows continues to send its traffic for a full period of 120s.
While this period does not capture the full lifetime of a realistic
flow, it should be enough to make flows experience heavy
or even worst-case queueing delays in the presence of other
critical traffic.

All experiments successfully demonstrated the absence of
packet loss. The experienced end-to-end delay divided by the
delay requirement of the applications (delay consumption) is
depicted in Fig. 3. A delay consumption greater than 1 implies
a missed deadline, which never occurred. This means that the
system of network calculus and admission control can indeed
provide guaranteed delay bounds and reliability. Another ob-
servation is that most of the time, the time-critical packets
arrive much sooner than their imposed deadline. Indeed, since
the only guarantees are worst-case delay bounds, and a worst-
case scenario over the whole path is quite rare, packets will
typically arrive much sooner. When looking at the worst-case
queueing delays in Fig. 4, it is clear that the delay budgets are
respected at all times.

D. Link failure

The link failure handling of the protocols is rated by their
ability to re-embed the flows, and by the number of packets
lost. There will always be a transitional period (rerouting win-
dow) between the link going down and the full confirmation
of a new path, during which packets will get lost. Note that a
critical packet that does not have a full path is considered lost
here. Three different scenarios are evaluated 5 times: a random
link failure at a low network load (1), at a medium network

Protocol Reroute success rate Packets lost per flow
LS Min-Delay 73% 170
Greedy BF 70% 528
Greedy DF 92% 27

TABLE II: Failure handling performances for scenario 1

Protocol Reroute success rate Packets lost per flow
LS Min-Delay 20% 33
Greedy BF 30% 286
Greedy DF 33% 19

TABLE III: Failure handling performances for scenario 2

load (2), and high network load (3). These network loads are
based on the results of section VI-B, i.e., the scenarios differ
regarding the network utilization of the critical traffic and they
range from around 17% to 25% to 30%. The results are given
in tables II, III, and IV.

The exploration protocols are significantly more successful
in rerouting broken flows. This could be because there is a
peak of rerouting requests upon a link failure, resulting in
a performance drop for the link-state protocol due to the
increased inaccuracy of the queue-level topology map. This is
not a problem for exploration-based protocols, which always
make use of the latest local information at every router. On the
other hand, the BF exploration protocol loses a lot of packets
compared to the other protocols, which might indicate that it
takes more time to reroute flows.

E. Scalability

The scalability of the protocols is evaluated by the num-
ber of accepted flows and the flow embedding times. This
experiment is performed by setting up flows in three large-
scale networks for a duration of 25 s. These three networks
are generated using IGEN [17], and consist of 100, 500, and
1000 nodes each. These networks cover the same geographical
area but differ in the number of nodes and links. This means
that a network with more nodes is more connected, and has a
larger search space between two given nodes. The results are
depicted in Fig. 5.

It might be observed that the DF exploration protocol does
not scale well to larger networks, as its flow embedding
times become excessively long. On the other hand, the flow
embedding times of the BF and LS protocols remain almost
constant. Fig. 5a illustrates that the BF exploration protocol
makes the best use of the added capacity in the network
when the number of nodes increases. This is probably due
to its parallel capabilities, such that it can explore more
and better paths in a smaller amount of time than the DF
variant. Moreover, unlike the LS protocol, the BF exploration
protocol does not suffer from state management overhead

Protocol Reroute success rate Packets lost per flow
LS Min-Delay 5% 5
Greedy BF 20% 285
Greedy DF 21% 36

TABLE IV: Failure handling performances for scenario 3

(a) Number of accepted flows per protocol

(b) Mean flow embedding time per protocol

Fig. 5: Experimental results comparing scalability of different
protocols.

and uncertainty, which become greater if the network grows.
However, a higher number of nodes does not necessarily imply
a higher number of flows, as observed in Fig. 5a. This could
be because of the longer paths in bigger networks. Since
the flow’s burst increases at every hop per network calculus,
more burst is needed for a single flow compared to a smaller
network. The result is that fewer flows can be embedded into
the network when this increased burst becomes too much.

F. Link-state vs. exploration-based

Based on the simulation experiments presented in this
section, none of the protocols stands out as the best overall.
However, the LS protocol consistently performs well across all
aspects, whereas the performance of the exploration protocols
is more variable. This consistency, coupled with the fact that
it is based on the well-established principles of standard LS
protocols, makes the LS protocol the most promising among
the presented protocols.

VII. CONCLUSIONS

This paper has presented three novel routing protocols
that can guarantee bounded end-to-end delay for real-time
applications without experiencing packet loss by exploiting
network-wide queue information. All of the proposed proto-
cols are parameterizable to suit different scenarios and can
be easily extended with new heuristics and path computation
algorithms. Experimental results demonstrate the potential of
these protocols in large-scale networks enabling real-time and
reliable networking.
The performed work and proposed mechanisms also create
opportunities for several enhancements and future research.
The delay budgets of the priority queues are crucial in guar-
anteeing delay bounds. However, they put severe restrictions
on the burst length and bandwidth that can be reserved in every
queue. Future research might focus on investigating the impact
of those budgets in combination with the application require-
ments to compute optimal delay budgets. Other interesting
topics include evaluating more complex heuristics, and hybrid
protocols combining the strengths of the LS QoS routing
protocol with an exploration-based QoS routing protocol,
which could further improve the scalability of the LS routing
protocol.

VIII. ACKNOWLEDGMENTS

This research was funded by the Flemish FWO SBO
S003921N VERI-END.com (Verifiable and elastic end-to-end
communication infrastructures for private professional envi-
ronments) project, by the FWO, Belgium project under grant
agreement #G055619N and the Flemish Government, Belgium
under the “Onderzoeksprogramma Artificiele Intelligentie (AI)
Vlaanderen”.

REFERENCES

[1] Ahmed Nasrallah et al. “Ultra-low latency (ULL) net-
works: The IEEE TSN and IETF DetNet standards and
related 5G ULL research”. In: IEEE Communications
Surveys & Tutorials 21.1 (2018), pp. 88–145.

[2] Amaury Van Bemten et al. “Chameleon: predictable
latency and high utilization with queue-aware and
adaptive source routing”. In: Proceedings of the 16th
International Conference on emerging Networking EX-
periments and Technologies. 2020, pp. 451–465.

[3] Amaury Van Bemten and Wolfgang Kellerer. “Network
calculus: A comprehensive guide”. In: (2016).

[4] Alpar Juttner et al. “Lagrange relaxation based method
for the QoS routing problem”. In: Proceedings IEEE
INFOCOM 2001. Conference on Computer Commu-
nications. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Society (Cat. No.
01CH37213). Vol. 2. IEEE. 2001, pp. 859–868.

[5] Thomas Stüber et al. A Survey of Scheduling in Time-
Sensitive Networking (TSN). 2022. DOI: 10 . 48550 /
ARXIV.2211.10954. URL: https://arxiv.org/abs/2211.
10954.

[6] Norman Finn and Pascal Thubert. Deterministic Net-
working Problem Statement. RFC 8557. May 2019.
DOI: 10.17487/RFC8557. URL: https://www.rfc-editor.
org/info/rfc8557.

[7] Andrew G. Malis et al. Deterministic Networking
(DetNet) Controller Plane Framework. Internet-Draft
draft-ietf-detnet-controller-plane-framework-02. Work
in Progress. Internet Engineering Task Force, June
2022. 18 pp. URL: https://datatracker.ietf.org/doc/draft-
ietf-detnet-controller-plane-framework/02/.

[8] Roch A Guerin, Ariel Orda, and Douglas Williams.
“QoS routing mechanisms and OSPF extensions”. In:
GLOBECOM 97. IEEE Global Telecommunications
Conference. Conference Record. Vol. 3. IEEE. 1997,
pp. 1903–1908.

[9] Derek M. Yeung, Dave Katz, and Kireeti Kompella.
Traffic Engineering (TE) Extensions to OSPF Version 2.
RFC 3630. Oct. 2003. DOI: 10.17487/RFC3630. URL:
https://www.rfc-editor.org/info/rfc3630.

[10] Jun Song, Hung Keng Pung, and Lillykutty Jacob. “A
multi-constrained distributed QoS routing algorithm”.
In: Proceedings IEEE International Conference on Net-
works 2000 (ICON 2000). Networking Trends and Chal-
lenges in the New Millennium. IEEE. 2000, pp. 165–
171.

[11] Edsger W Dijkstra et al. “A note on two problems in
connexion with graphs”. In: Numerische mathematik 1.1
(1959), pp. 269–271.

[12] Andras Varga. “OMNeT++”. In: Modeling and tools for
network simulation. Springer, 2010, pp. 35–59.

[13] INET Framework: An open-source OMNeT++ model
suite for wired, wireless and mobile networks. https :
//inet.omnetpp.org. Accessed: 2022-05-19.

[14] Jakob Miserez. Routing protocols exploiting queue in-
formation for deterministic networks - INET. URL:
https://github.com/jakobmiserez/inet.

[15] Jakob Miserez. Routing protocols exploiting queue in-
formation for deterministic networks - implementation.
URL: https://github.com/jakobmiserez/thesis.

[16] S. Orlowski et al. “SNDlib 1.0–Survivable Network
Design Library”. English. In: Proceedings of the
3rd International Network Optimization Conference
(INOC 2007), Spa, Belgium. http://sndlib.zib.de, ex-
tended version accepted in Networks, 2009. Apr.
2007. URL: http : / / www . zib . de / orlowski / Paper /
OrlowskiPioroTomaszewskiWessaely2007 - SNDlib -
INOC.pdf.gz.

[17] Bruno Quoitin et al. “IGen: Generation of router-level
Internet topologies through network design heuristics”.
In: 2009 21st International Teletraffic Congress. IEEE.
2009, pp. 1–8.

