
1

On Decomposition and Deployment of
Virtualized Media Services

Gourav Prateek Sharma, Didier Colle, Wouter Tavernier, and Mario Pickavet

Index Terms—media, broadcast, virtualization, IP, de-
compostion, SMPTE, 4K

I. ABSTRACT

For decades, broadcasters have heavily relied on spe-
cialized hardware appliances for media transport and
processing. However, new architectures, where media
transport is realized using IP networking and general-
purpose compute hardware is used to run Virtual Media
Functions (VMFs), are increasingly being adopted in the
broadcast industry. To truly exploit the benefits of these
architectures, efficient resource allocation algorithms are
needed. Hence, we have proposed an algorithm to opti-
mize a media service’s VMF Forwarding Graph (VMF-
FG) prior to deployment. To deploy media services, two
VMF Placement and Chaining (VMF-PC) algorithms–
Next-Fit Placement and Chaining (NFPC) and k-cut
Placement and Chaining (k-cutPC) are proposed. The
presented evaluation results compare the performance of
the two VMF-PC algorithms along with highlighting the
improvement in resource allocation as a result of VMF-
FG decomposition.

II. INTRODUCTION

Today’s TV broadcasters today are facing multiple
challenges. On the one hand, due to the severe compe-
tition in the broadcast industry, the revenue generated
through the users has not increased substantially and
on the other hand, the user demand for high-quality
formats has risen [1]. To match the increase in demand,
broadcasters are forced to regularly upgrade their infras-
tructure that consists of specialized media transport and
processing hardware; this leads to a substantial increase
in the total expenditures. Moreover, these appliances
offer no to a little flexibility, e.g., configuring a the
hardware appliance to process high-quality media. As a
result, broadcasters are seeking economical and flexible
architectures to produce high-quality broadcast content.
Internet protocol (IP) has been a de facto standard to
interconnect devices within the Internet and also for

All authors are from IDLab, Department of Information Technology
Ghent University - IMEC (e-mail: gouravprateek.sharma@ugent.be,
didier.colle@ugent.be, wouter.tavernier@ugent.be and
mario.pickavet@ugent.be) .

many other computer networks. Broadcast studios are
also witnessing the adoption of IP technology, albeit for a
fraction of the total workloads. In addition to that, media
processing based on Commercial Off-the-Shelf (COTS)
compute platforms is expected to become common in
the foreseeable future [2]. The BBC and Grassvalley
have already demonstrated the feasibility of general-
purpose compute for broadcast applications [3], [4].
To summarize, studio architectures are being explored
where media transport is based on IP networking and a
general-purpose compute platform is utilized to realize
media processing because of two main advantages– (i)
cost reduction due to the replacement of costly hardware
appliances with general-purpose platforms and (ii) in-
creased flexibility in terms of media service deployment,
upgrade and management [1].
Prior to the TV broadcast industry, the telecom industry
witnessed a similar transition from proprietary hardware
appliances to general-purpose platforms running packet
processing functionality in the form of Virtual Network
Functions (VNFs). This new architecture that realizes
network services using virtualized infrastructures to run
VNFs is referred to as Network Function Virtualiza-
tion (NFV) [5]. Similar to NFV, Media Function Vir-
tualization (MFV) aims to leverage IT virtualization
technologies to realize media processing functionality.
Implementing a complex media service in a virtual en-
vironment involves processing of several uncompressed
media streams through a network of software-based me-
dia processing function, which are referred here as Vir-
tual Media Functions (VMFs). Deployment of network
services in virtualized environments has been studied
extensively [5], but that is not true for media service
deployments in virtual environments. Further, due to
the real-time nature of media production, several unique
challenges are faced by broadcasters when transitioning
towards MFV. Due to these peculiarities of MFV vis-a-
vis NFV, media transport and processing using general-
purpose platforms need to be studied to truly exploit the
opportunities offered by MFV.
Deployment of a media service in an MFV environment
entails the mapping of the media service’s VMF For-
warding Graph (VMF-FG) to the underlying infrastruc-
ture. The mapping involves an assignment of Virtual
Media Functions (VMFs) to the server nodes, along

2

with linking VMFs to allow the flow of media traffic
between them. As VMF-FG mapping influences the
amount of infrastructure required to host media services,
it should be performed efficiently. The media traffic
between VMFs can be decomposed in multiple sub-
streams, each of which represents a different region of
the frame [6]. Further, due to the possibility of software-
based processing, the decomposed sub-streams can be
independently processed using numerous VMFs. These
two opportunities unique to the MFV environment give
an opportunity to optimize media service deployment.
Specifically, the media service’s VMF-FG can be de-
composed to obtain an optimized VMF-FG that requires
less amount of resources when deployed. In our previous
work, we demonstrated the benefits of VMF decom-
position for static deployment of media services [7].
This paper extends that work by proposing a generalized
VMF-FG decomposition algorithm and two algorithms
aimed at media service deployment.
In concrete terms, the contributions of this paper are as
follows:

1) Formally defining the VMF-FG decomposition
problem and proposing a generalized procedure to
solve the problem

2) The design of two algorithms for VMF-FG deploy-
ment (i) Next-fit VMF Placement and Chaining
(VMF-PC) and (ii) k-cut VMF-PC

3) Evaluation of the performance of the proposed
VMF-PC algorithms with varying decomposition
of VMF-FGs

The rest of the paper is structured as follows. In Section
III, we deal with the technical background and related
works. The system model, the problem of VMF-FG
decomposition and the procedure to solve this problem
are presented in Section IV. Section IV also describes
the two VMF-PC algorithms– NFPC and k-cutPC. The
evaluation of the two VMF-PC algorithms and VMF-FG
decomposition is dealt in Section V. Finally, Section
VI draws the main conclusions along with the potential
future research.

III. BACKGROUND AND RELATED WORKS

The popular usage of IP in the TV broadcast industry
is in media distribution due to the flexibility it offers
over the traditional broadcast methods; IPTV services
are deployed over a managed network. Recently, the
concept of Over-the-Top (OTT) media has emerged to
provide additional services such as Video on Demand
(VoD) and interactive TV over the internet; these services
were not earlier possible with Cable and Direct-to-home
(DTH). By using techniques like Adaptive Bit Rate
(ABR) the quality of media is adjusted in accordance

to the available bandwidth [8]. Furthermore, there has
been an interest to move media workflows to the cloud
managed by service providers (e.g., AWS, GCP). In [9],
on-premise and cloud-based media broadcast scnearios
are compared in terms of protocols and used technolo-
gies. The authors have also proposed various hybrid
architectures with different amounts of offloading to the
cloud. A proof-of-concept for SDN/NFV enabled video
transcoding has been proposed in [10]. Agility offered
with this solution is a key factor to dynamically adapt
media quality with changing network conditions.
The objective of this work is to optimize only the media
production workflows in an on-premise facility. There-
fore, we are not concerned here with the optimization of
workflows in media distribution networks.

A. Media Transport
For decades, broadcasters have employed proprietary

baseband technologies for the purpose of media
production. Serial Digital Interface (SDI) is one such
technology popularly utilized for transporting media
streams across broadcast studios [11]. SDI connections
are serial data circuits carried over dedicated coaxial
cables with BNC connectors. Different SDI standards
exist that are used to transport uncompressed media
streams of different formats. For example, HD-SDI
(SMPTE 292M) interfaces can be used to transport
720p or 1080i video whereas 1080p60 streams are
transported using 3G-SDI (SMPTE 424M). The media
streams in an SDI-based network are circuit-switched
using an SDI switch containing a switching matrix that
interconnects the matrix’s input to the specific matrix’s
outputs. The switching matrix operates at the speed
equal to the sum of the line speeds of all its ports,
resulting in a nonblocking switching operation at all
times. In addition, SDI-based media transport in studios
have proven to be robust, deterministic and reliable.
Lately, broadcasters are increasingly replacing SDI
networking in their studios with IP-based solutions.
Although IP has been widely successful in other
domains (e.g. telecom) owing to its flexibility, its
utilization in broadcast studios has been limited. Mostly,
the file-based workflows depend on IP networks to
transport the media between different studio devices;
for instance, between editing workstations, file servers,
and archiving systems. Outside the studios, media
contribution and distribution are widely done via IP
networks. However, applications such as live media
production still rely on SDI-based transport. This is
could be attributed to the deterministic performance and
robustness of SDI vis-a-vis IP. However, with time the
speed of Ethernet switches has increased many folds,
up to the point that media transport could now easily
be achieved using IP networking. IP also supports

3

multiplexing, i.e., multiple media streams of different
formats can be carried on the same link subject to the
link’s bandwidth. This allows a gradual up-gradation of
the studio infrastructure for high-quality media formats
such that the same format-agnostic IP networks can
be used until enough bandwidth is available. This
contrasts with conventional studios where specialized
hardware like SDI routers need to be replaced with
new hardware compatible with new media formats.
For instance, consider a standard full-HD (FHD) and
4K or ultra-HD (UHD) video having a resolution of
1920x1080 and 3840x2160, respectively, with 4:2:2
sampling, 10 bits per sample, and a frame rate of
30fps. The uncompressed FHD and UHD video streams
in this format require 1.244 Gbps and 4.976 Gbps,
respectively, on a (physical) link. Thus, theoretically,
up to 8 FHD or 2 UHD or, 4 FHD + 1 UHD, streams
can be simultaneously carried on a 10G link. Ethernet
switches with tens of 10G ports are commercially
available so that multiple FHD streams can be switched
by these switches simultaneously. Multiplexing along
with bi-directionality of IP allows a significant reduction
in the amount of cabling required when compared to
SDI; thus resulting in cost reduction along with an ease
of management. Furthermore, higher-resolution video
formats with bitrates touching tens of Gbps, e.g., 4K,
can also be transported on an IP network by upgrading
the network with COTS 25G or 40G port devices
that are expected to become significantly cheaper in
the coming years; whereas the upgrade cycles for
proprietary SDI switches are very long and expensive.
A broadcast studio facility needs to interconnect
multiple media devices. Interconnection based on SDI
switching has low-latency is non-blocking, lossless, and
supports point to multipoint [12]. These properties must
also be supported when transitioning to the IP-routed
infrastructure. A multilayer switching architecture, as
commonly used in datacenters, can be thought as a
single switch interconnecting all the studio devices.
Fig. 1 illustrates an all-IP studio architecture, where the
switching core is a fat-tree topology connecting media
sources (e.g., cameras, microphones), general-purpose
compute nodes (e.g., Intel Xeon servers) and media
sinks (e.g., monitors, speakers). Although the size of
the on-premise switching network is much smaller
than that of large datacenters owned by Google or
Facebook, but the same fat-tree topology can be used
to fulfill the broadcast studio requirements. Moreover,
the datacenter topology is an ideal way to interconnect
multiple servers that are used to host virtualized
media processing functionality, as explained later.
These topologies allow an easy upgrade to new media
formats (e.g., FHD, UHD) and scaling the number
of interconnections (e.g., new cameras) due to the

format-agnostic nature of the IP. Grass Valley has built
an IP-routed switching network capable of switching
6 Tbps live media traffic at a BBC facility [13]. In
summary, by building the studio network along the lines
of datacenter networks (e.g. leaf-spine), the speed of
the switching fabric can be scaled massively such that
multiple uncompressed 4K video streams could also
be transported across the studio network built entirely
upon IP [12].
Due to the growing popularity of IP for media transport,

Fig. 1. Illustration of studio architecture based on a datacenter
topology.

the Society of Motion Picture and Television Engineers
(SMPTE) has released a suite of standards ST 2110
that describe how to transport uncompressed media
streams over an IP network [14]–[17]. The ST 2110
suite of standards allows transport and processing of
media essences, i.e., video, audio, and ancillary data, as
independent streams. By allowing separate elementary
essence streams, media production is significantly
simplified in contrast to the tightly bundled streams in
SDI or ST 2022 [18]. Table I lists different standards
of the suite ST 2110 along with a short description.

For the independent transport of media essences,

TABLE I
SMPTE 2110 SUITE OF STANDARDS AND SHORT DESCRIPTION

Standard Description
ST 2110-10/-20/-30
[14]–[16]

addressing system concerns
and uncompressed video and
PCM audio streams

ST 2110-21 [19] specifying traffic shaping and
delivery timing of the uncom-
pressed video

RP 2110-23 [6] specifies methodologies for
splitting high bandwidth single
video essence streams into sev-
eral lower bandwidth streams

ST 2110-31 [20] specifies the real-time, RTP-
based transport of AES3 sig-
nals over IP networks, refer-
enced to a network reference
clock

ST 2110-40 [17] transport of ancillary data
packets

4

SMPTE ST 2110-10/-20/-30 specifies use of the
Real-time Transport Protocol (RTP) which itself is
based on the User Data Protocol (UDP). At the essence
sender, the data (e.g., video, audio, or ANC) is broken
into multiple segments that go into the RTP payload,
which is then attached to the RTP header containing
the required flags and fields. The RTP packets are
recursively encapsulated while transcending the lower
layers of the networking stack. The packets on the
network are independently transported to the receiver
where they are reassembled by referring to the RTP
sequence number contained in the header. The payload
is then passed to the application/device where the full
frame is generated for further processing or display.

1) Media Decomposition: Uncompressed high-
resolution video streams, e.g., 4K or 8K, are difficult to
transport and process given their high bandwidth and
therefore high compute requirements. By decomposing
a high-bandwidth stream into multiple low-bandwidth
streams, this issue can be alleviated. Given this
challenge, the SMPTE released a recommended
practices document RP 2110-23 that describes three
mechanisms through which high-bandwidth streams
can be split [6]. The first scheme is called Phased
decomposition where a high frame rate stream is
decomposed into multiple low frame rate streams, also
known as ”phases”. This decomposition scheme is
particularly useful when working within an environment
consisting of high-speed cameras with high refresh
rates, e.g., 120 Hz. Sample interleave decomposition
is the second scheme where M -way splitting of a
high-bandwidth stream results in M sub-streams each
carrying frames of resolution 1/M that of the original
stream. Lastly, the third stream decomposition method–
Square Division (SD) is explained next.
M -way SD decomposition of a media stream results
in splitting of each frame of the original stream into
M quadrants each carried by a different sub-stream.
Fig. 2 illustrates 4-way decomposition of a 4K video
stream. The original 4K (3840x2160p30) stream with
the bitrate 4.976 Gbps when 4-way decomposed results
in four 2K (1920x1080p30) sub-streams each with
bitrate 1.244 Gbps. Each 2K stream can be further
decomposed again using 4-way SD such that a total
of sixteen 960x540p30 sub-streams are obtained. The
transport and processing of multiple low-bandwidth
streams (2K or 960x540p30) is clearly easier when
compared to a single high-bandwidth (4K) stream. This
paper only considers the SD decomposition method as
it can be exploited for VMF-FG decomposition, which
has been explained in detail in section IV.

Fig. 2. An example of 4-way SD decomposition of 4K video stream.

B. Virtualized Media Processing

Similar to the use of proprietary equipment for media
transport, media processing in broadcast studios has
been dominated by proprietary hardware appliances.
This is due to the high performance offered by spe-
cialized hardware platforms [2]. COTS platforms con-
sisting of general-purpose compute nodes (e.g., Intel
Xeon servers), however, have lately become significantly
faster (Moore’s law) so that they can be used to run
Media Functions (MFs). For instance, consider an MF
that mixes two video streams with a special effect (e.g.
wipe or dissolve transitions). Today, broadcasters use
a specialized hardware appliance called vision-mixer
to achieve this functionality. This functionality, how-
ever, can also be realized in a software running on
a COTS server [21]. The production quality vision-
mixer has been implemented using open source tools
like OBS studio and KX studio running on a general-
purpose platform. The resulting vision mixer provides a
real-time delay of 1.4s, which is acceptable for multi-
camera production. Furthermore, the processing delays
in software-based media production facilities can be
reduced by exploiting several optimizations, e.g., kernel
offload mechanisms such as DPDK and netmap [22],
hardware-acceleration of media processing using FPGAs
and GPUs [23], [24]. As the focus of this paper is
the media service deployment problem so performance
optimization mechanisms shall not be discussed in this
paper.
Exploiting general-purpose compute platforms instead
of dedicated hardware to host services is not limited
only to the TV broadcast industry. Telecom operators
are adopting Network Function Virtualization: an ar-
chitecture where packet processing functionality, which
is usually realized by specialized hardware appliances
called middleboxes, is being realized using Virtual Net-
work Functions (VNFs) running on the general-purpose
compute platforms. Analogous to the VNFs in NFV,
media processing can be realized using software-based
implementations of MFs running in a virtualized envi-

5

ronment; we refer to these software MF implementations
as Virtual Media Functions (VMFs). Tab. II lists some
example VMFs along with a short description for each
of them.

TABLE II
EXAMPLE VMFS WITH SHORT DESCRIPTION.

Name Notation Description
Chroma key chrm-key Replaces the background (nar-

row range of colour) of a video
stream with another video
stream, e.g., weather presenter
background.

Picture-in-
picture

pip Inserts a small resolution video
stream into a large resolution
video at a given coordinate.

Video
quality
assessment

vqa Assesses the amount of distor-
tions introduced to the media
by a VMF.

Brightness
Adjustment

brt-adj Adjusts the pixel values of a
video stream according to the
correction signal produced by
a VQA VMF.

The BBC has built prototypes for live IP produc-
tion and also carried out a live multi-site all-IP UHD
production trial at the Glasgow Commonwealth Games
in 2014 [25]. Partnering with Isotama, they have also
demonstrated the live mixing of video streams using
a software-based video processing pipeline that can be
controlled through a browser application [3]. Addition-
ally, Grassvalley’s has released Agile Media Processing
Platform (AMPP) which is a microservice-based solution
that leverages elastic compute of the COTS platforms
to run a variety of media processing workflows [4].
To summarize, media production using general-purpose
compute infrastructure is quite feasible and broadcaster
are expected to adopt them with time.
Taking inspiration from NFV, we define MFV as an
architecture where media services are implemented using
Virtual Media Function (VMFs) running on general-
purpose compute platforms. Fig. 3 shows a simplified
view of the MFV architecture. The lowest layer in the
architecture is the MFV Infrastructure (MFVi) layer that
contains all resources, i.e., both physical and virtual,
required to run VMFs along with the virtualization layer
that is responsible for providing the required isolation
between running VMFs. Depending on the type of
virtualization technology used, the virtualization layer
can be a Hypervisor (type 1 or 2) if Virtual Machines are
to be deployed or it can be a Docker engine if containers
are to be used. Above the MFVi layer, lies the VMF layer
that consists of VMFs, in the form of VMs or containers,
where actual media processing occurs. The VMFs can be
chained together to realize a complex media service (top
layer) as explained in the next section.
The Control and Optimization (CO) layer in Fig. 3

is analogous to the Management and Orchestration
(MANO) layer in the NFV architecture.
The role of the CO layer in MFV is multi-fold. First,
it manages resources (physical and virtual) through the
use of some infrastructure management tools such as
Openstack.
Second, it is responsible for managing the state of
one or more VMFs by performing tasks like update,
query, scaling, healing, and termination of the VMFs.
The operation of various VMFs needs to be altered at
times according to the requirements of the director. For
example, the director may need to switch through a
number of camera feeds throughout an event. This can
be done using a switcher VMF that takes as an input
all camera feeds and switches to a particular stream
according to the control signal sent by the director using
a controller to the switcher VMF. The CO layer is
responsible for the distribution of control signals to the
deployed VMFs.
Third, the CO layer performs service orchestration by
coordinating various resources across the MFVi layer. To
this end, the CO layer takes various inputs such as VMF
Placement and Chaining (VMF-PC) algorithms, the me-
dia service representation (e.g., VMF-FG), profiles con-
taining VMFs’ resource demands, the QoS requirements
of the media services, etc, to do resource allocation by
running the selected VMF-PC algorithm that outputs
the required VMF-FG-to-MFVi mapping, that is used
to reserve physical resources in the MFVi layer. By
carefully designing and selecting the appropriate VMF-
PC algorithm, the QoS requirement of the media service
can be met while efficiently utilizing the resources.

The decomposition of high-bandwidth streams in an

Fig. 3. An overview of the MFV architecture.

MFV environment provides an opportunity to further
decompose the VMFs of a VMF-FG; thus it can result
in improving resource utilization, as shall be discussed
in the next section.

6

IV. SYSTEM MODEL

In this section, we formalize the MFV network model,
describe the VMF-FG decomposition and deployment
problem, and present two algorithms to solve them.
The traditional media production environments are
inflexible in terms of transport and processing of
media streams due to their dependence on specialized
hardware. Therefore, IP-networking for media transport
combined with virtualization of media processing
workflows seems to be well suited for future broadcast
studios. The media services in these environments
can be denoted using a directed graph referred to as
VMF-FG as explained later in this section.
MFV is more than just the softwarization of MFs
and then its deployment on the COTS platform.
Virtualization of MFs opens several opportunities
that were not earlier possible with the physical
implementations of MFs. Before the deployment of
a media service, VMF-FG can be optimized such
that fewer resources are consumed compared to un-
optimized VMF-FG post-deployment. The optimization
can be done by decomposing the VMFs, distributing
the switching functionality, and using the state of
downstream VMFs to enable/disable upstream VMFs,
etc.

Before discussing the VMF-FG decomposition and
deployment problems, we first formalize the MFV
model.
The notations used for various parameters, variables
and procedures along with a short description are listed
in Tab. III. We model the MFVi physical network as a
connected directed graph GI = (N,E). Here, N and E
denote the set of physical nodes and links, respectively,
in the MFVi network. A subset of nodes Nc ⊂ N are
COTS server nodes that have the required resources
to run VMFs. The rest of the nodes ∀n 6∈ Nc are just
forwarding nodes, i.e., switches or routers. As each
node n ∈ Nc has a limited amount of resources (e.g.
CPU, RAM, disk, etc), we just use cpun to represent the
resource capacity of node n, here it is the total number
of CPU cores. Each physical link e = (ni, nj) ∈ E has
an associated physical bandwidth denoted by bwni,nj

.
A media service s is realized by allowing the media
traffic to flow through a specific arrangement of
VMFs. The arrangement of VMFs defining the service
is represented by a directed acyclic graph (DAG)
G = (F ,L), here referred to as VMF Forwarding
Graph (VMF-FG). A node f ∈ F of the VMF-FG
represents an endpoint (media sources or sinks), or a
VMF, whereas an edge l = (fi, fj) ∈ L is the virtual
link connecting the VMFs fi and fj . An endpoint is
either from the set of media sources Fsrc that includes
cameras, playout servers or from the set of media sinks

TABLE III
NOTATIONS USED IN THE SYSTEM MODEL FOR PARAMETERS,

VARIABLES AND PROCEDURES.

Notation Description
GI =
(N,E)

Directed graph representation of the MFVi
network, where N and E are the set of the
physical nodes and links, respectively.

Nc Set of all server nodes, i.e., nodes with compute
resources.

cpun CPU resources (in number of cores) present on
a server node n ∈ Nc.

bwni,nj Available bandwidth available on the physical
link (ni, nj) ∈ E.

G = (F ,L) VMF-FG representation of a media service,
where F and L are the set of VMF and virtual
links, respectively.

Fsrc Set of all media sources in G.
Fsnk Set of all media sinks in G.
Ph(l), Pv(l) Number of pixels on a frame corresponding to

the virtual link l ∈ L.
Size(l) Total number of pixels on a frame corresponding

to the virtual link l ∈ L.
fps(l) Refresh rate of the stream on the virtual link

l ∈ L.
Pf Set of all port in the VMF f .
Upstr(fp) Upstream VMF on the port p ∈ Pf of the VMF

f .
M Decomposition parameter by which each virtual

link is decomposed, where M = 4m,m ≥ 0.
Gsw A subgraph in the VMF-FG G consisting of only

switching VMFs.
Gsetsw The set of all subgraphs Gsw in the VMF-FG

G.
txu,v u-to-v Transmit condition.
Txsnk

u,v u-to-v Cumulative transmit condition when
starting the traversal from the sink VMF snk.

α Variable containing VMF-to-node assignment
mapping.

γ Variable containing Virtual link -to- physical
link mapping.

Fnbrs
f The set of upstream VMF neighbours of f ∈ F .

used res Variable containing currently reserved resources.
cap Resource capacity of physical nodes and links

in GI .

Fsnk that includes multiviewer screens, file-servers
(archives, OTT, etc) and the broadcast transmitter
(DVB-T Tx). Each virtual link l ∈ L for a video
processing service is annotated by the parameters such
as the frame resolution (e.g., 2K, 4K), the color space
(e.g., RGB, YCbCr), the sub-sampling scheme (e.g.,
4:2:2, 4:2:0), and the refresh rate (e.g., 24fps or 30fps),
where the frame resolution is PhxPv , Ph is the number
of pixels in horizontal direction and Pv is the number of
pixels in the vertical direction. Similarly, for an audio
stream, the annotation contains parameters such as the
sampling frequency (e.g., 48kHz), the number of audio
channels (e.g., 1, 2, 8), etc.
Fig. 4 shows G, the VMF-FG representation of
an example media service. In this VMF-FG, F =
{src0, src1, src2, chrm-key, scl, vqa, pip, dst0, dst1}
and L = {(src0, chrm-key), (src1, chrm-key), (src2, scl),
(chrm-key, pip), (scl, pip), (chrm-key, vqa), (vqa, dst0),

7

(pip, dst1)}. Here, the set of video sources is
Fsrc = {src0, src1, src2} and the set of video sinks
is Fsnk = {dst0, dst1}. The parameters associated
with the streams corresponding to all virtual links take
values as follows: YCbCr for the color space, ’4:2:2’
for the sub-sampling scheme, and 30fps as the refresh
rate. The link (scl1, pip) has a resolution of 646x364
and all other links have the resolution of 1920x1080,
except for (vqa, dst0). The VMF chrm-key applies
the chroma-keying operation on the its inputs that are
connected to the two video sources src0 and src1, to
produce the output where the background (e.g., green
pixels) of the first stream (src0) is replaced by the
background stream produced by the second source
(src1). VMF vqa assesses the quality of chrm-key’s
output and stores the results in dst1. The output of
the chrm − key VMF may contain some artifacts due
to, e.g., low CPU allocation or delayed / lost packet
in one of its input stream. The output of chrm-key is
also mutlicasted to pip that embeds a low-resolution
video stream received on its second input. Using the
scaler VMF scl1, the second input is generated by
scaling down the video stream produced by src2. The
output of pip VMF is then terminated at the sink dst1.
Similarly, a VMF-FG can be used to represent any other
complex media service. Next, we define the VMF-FG

chrm-

key pip

sclsrc2

dst1src1

src0

G

vqa dst0

1

0

2

3 4

5

6

7 8

C

...

(0, 2): {P
h
: 1920, P

v
: 1080, spl: ‘4:2:2’, cs: ‘YCbCr’, fps: 30}

(4, 7): {P
h
: 646, P

v
: 364, spl: ‘4:2:2’, cs: ‘YCbCr’, fps: 30}

...

Fig. 4. The VMF-FG G representation of an example media service.

decomposition problem and describe an algorithm to
produce the M -way decomposition of a given VMF-FG.

A. VMF-FG Decomposition

Given a VMF-FG G = (F ,L), the M -way
decomposition of G is another VMF-FG G′ that is
functionally equivalent to G but all of its virtual links
are M -way decomposed. Here, we assume that the
decomposition scheme used is SD decomposition.
Decomposing the virtual links of a VMF-FG further

allows the decomposition of the VMFs in of the
given VMF-FG. With VMFs and virtual links being
decomposed, several optimization can be applied to the
VMF-FG without altering the overall functionality. By
solving the VMF-FG decomposition problem, we imply
that a functionally equivalent but optimized VMF-FG
is generated. The optimized VMF-FG is generally less
resource demanding than the original VMF-FG and thus
can be deployed more efficiently.
Next, we describe an algorithm we have proposed to
solve the VMF-FG decomposition problem.
The VMF-FG decomposition algorithm takes an
undecomposed VMF-FG, G = (F ,L) along with the
decomposition parameter M and returns the M -way
decomposed VMF-FG. The decomposition parameter
M = 4m, where m ≥ 0, indicates the level of
decomposition for each virtual link in the VMF-FG. For
example, M = 1 (m = 0) implies no decomposition,
whereas M = 4 (m = 1) implies a 4-way decomposition
as shown in Fig. 2. For the sake of simplicity, we assume
that all VMFs are Multiple Input Single Output (MISO)
type, similar to the one shown in Fig. 5. A MISO
VMF can have multiple input ports such that each
of its input ports is connected to the output port of
only one upstream VMF. The single output port of the
VMF f is simply denoted by the VMF itself, i.e., f ,
whereas the pth input port of the VMF is denoted by
fp. In Fig. 5, the VMF f connected to the port p of
the VMF f is denoted by Upstr(fp) and the frame
size on the virtual link l = (Upstr(fp), f) is simply
denoted as Size(Upstr(fp)), e.g. if Upstr(fp) = up,
Size(up, f

p) = Size(Upstr(fp), fp) = Size(fp).
The single output port of the VMF can be multicasted
to multiple destinations, e.g., the raw camera footage
being processed by some VMF can also be archived
at the same time for later use. In Fig. 5, the output of
f is multicasted to D destination VMFs denoted by
d0, d1, d2, ..., dD−1 from the single output port ’f ’.

Fig. 5. An illustration of a MISO VMF f .

A VMF with multiple output ports can be easily

8

decomposed into multiple VMFs with single output
ports. For example, consider the Multiple Input
Multiple Output (MIMO) VMF f , shown in Fig. 6
(a), where its P inputs ports are connected to the
upstream VMFs u0, u1, u2, ..., uP−1 and similarly
its P ′ output ports are connected to the downstream
VMFs d0, d1, d2, ...dP ′−1 on separate unicast links.
The VMF f internally implements a function g,
operating on a input vector I = [u0, u1, u2, ..., uP−1],
whose output is then shared to produce the outputs
h0(g(I)), h1(g(I)), h2(g(I))...hP ′−1(g(I)). The MIMO
VMF f can hence be decomposed into n + 1 MISO
VMFs as shown in Fig. 6 (b). First, the VMF g
is applied over I to produce a single output g,
which is then multicasted to the inputs of P ′ VMFs
h0, h1, h2, ..., hP ′−1, respectively. In this example, each
output port of f is connected to a single downstream
VMF on a unicast link. However, MIMO VMFs having
multicast links at their output ports can be decomposed
in a similar manner. This way, any MIMO VMF in a
VMF-FG can be transformed into a set of MISO VMFs
before proceeding to the first step of the VMF-FG
decomposition algorithm.

Fig. 6. (a) Internals of the MIMO VMF f and (b) its decomposition
into MISO VMFs g, h0, h1, ..., hP ′−1

The VMF-FG decomposition algorithm consists of
four steps as shown in Fig. 7.

Virtual Link Decomposition: The first step of the
procedure is the decomposition of all virtual links of
the VMF-FG by M . Each link ∀(fi, fj) ∈ L, fi =
Upstr(fpj), is replaced by M (fi, fj) links, where
fi = Upstr(fp

′

j), p′ = [pM, (p− 1)M − 1]. As we have
assumed the SD decomposition in our procedure, the

Virtual Link

Decomposition

VMF

 Decomposition

Switching

Distribution

Carrying

Tx condition

Decomposed

VMF-FG

VMF-FG, M

VMF specific (accomplished

according to the given

template)

Fig. 7. Flowchart showing the VMF-FG decomposition procedure.

frame size of the virtual link (fi, fj) after decomposition
becomes Size′(fp

′

j) = Size(fpj)/M = (PhPv)/M ,
here Ph and Pv are number of pixel in horizontal and
vertical directions, respectively, in the frame correspond-
ing to (fi, fj) before decomposition. For example, con-
sider the part of the VMF-FG showing two neighbouring
VMFs fi and fj as shown in Fig. 8 (a) whereas Fig. 8
(b) shows link decomposition of (fi, fj) into M new
links.

Fig. 8. Illustration for the virtual link decomposition step. (a) The
virtual link (fi, fj) ∈ L and (b) its decomposition by M .

The forwarding graph returned after the first step is
denoted as G1.

VMF Decomposition: After the first step, the number
of input and output ports of each VMF in the resulting
forwarding graph G1 are grown M times. Next, G1 is

9

transformed into a forwarding graph only containing
VMFs with single outputs. In this step, each MIMO
VMF is replaced by a forwarding graph consisting
of MISO (switch and non-switch) VMFs connected
through multicast links. The forwarding graph nodes,
i.e., MISO switch and non-switch VMFs, are then
appropriately connected to the control signals.
The VMF decomposition procedure is specific to each
VMF. This can be provided as a template/code by
the developer of the VMF that contains the steps to
generate the required forwarding graph and distribute
the control signals to the VMFs.
Next, we show how a chrm-key and picture-in-picture
(pip) VMF can be decomposed.
The VMF decomposition step for chrm-key is quite
straightforward as shown in Fig. 9 (c). Prior to the
VMF decomposition, the link decomposition step
is performed, as shown in Fig. 9 (b). Each link in
Fig. 9 (a), i.e, (s0, chrm-key), (s1, chrm-key) and
(chrm-key, d0) is decomposed into M = 4 links
corresponding to the four quadrant of a frame. As
each output pixel of chrm-key VMF is computed
using the corresponding input pixels only, the chroma-
keying operation can be performed in each quadrant
independent of each other. Therefore, chrm-key can be
decomposed into chrm-key0, chrm-key1,chrm-key2
and chrm-key3, each responsible for producing output
for quadrants q = 0, q = 1, q = 2 and q = 3,
respectively.
Next, we discuss a more complex example of VMF
decomposition.
Consider the pip VMF shown in Fig. 10 (a). The pip
VMF inserts the frames of the video stream on port
1 into the frames of the video stream on port 0 at
a given coordinate in the upper-right quadrant. The
controller connected to the pip VMF is used to control
the operation of the pip VMF, i.e., it signals if the
second stream is to be inserted in the first stream or
not. In other words, if say ctrl == 0, the pip VMF is
disabled and the output of the pip VMF is the same
as that of s0 and if ctrl == 1 the pip operation is
enabled on the output. Fig. 10 (b) shows the pip VMF
and its neighbours after performing the virtual link
decomposition step by M = 4. Before decomposing the
pip VMF, its upstream VMFs s0 and s1 are decomposed
into s0q,∀q ∈ [0,M − 1] and s1q,∀q ∈ [0,M − 1],
respectively, each corresponding to the four quadrants,
as shown in Fig. 10 (c). As in this example, picture
insertion occurs in the upper-right (q = 1) quadrant;
thus processing will be required for this quadrant
only. This implies that after pip VMF decomposition,
the VMF pip1 (q = 1), which is responsible for
performing pip operation in the upper-right quadrant
will be instantiated. Moreover, as no picture is inserted

in the other three quadrants, no processing is required
for these quadrants, i.e., the pip VMFs – pip0, pip2
and pip3, corresponding to the upper-left (q = 0),
lower-left (q = 2) and lower-right (q = 3) quadrants,
respectively, are not instantiated (Fig. 10 (c)). A
two-port switch VMF is also instantiated that takes
the output of s01 at port 0 and pip1 at port 1. Based
on the ctrl value, the sw VMF switches between its
inputs, i.e., if ctrl == 0, the sw VMF outputs the s10’s
output whereas if ctrl == 1, the sw VMF outputs the
pip1’s output. For other three quadrants, the respective
upstream (s0q, ∀q = {0, 2, 3}) and downstream VMFs
(d0q, ∀q = {0, 2, 3}) are connected.
Other VMF types such as split-screen, switcher
(with transition effects, e.g., wipe), etc, can be also
decomposed similarly.
The forwarding graph returned after the second step is
denoted as G2

Switch Functionality Distribution: Following the
decomposition of all VMFs, the resulting forwarding
graph G2 consists of MISO switch and non-switch
VMFs linked by multicast virtual links. Next, we
describe how the functionality of switch VMFs can
be distributed to the VMFs that are upstream and
downstream to the switch VMF.
The switch VMF sw shown in Fig. 11 has two inputs
connected to the upstream VMFs u0 and u1 and its
output is connected to the downstream VMF d. The
functionality of the switch VMF sw can be distributed
to the upstream VMFs by allowing triggering the correct
upstream VMFs to transmit to the correct downstream
VMF(s) based on the value of the control signal ctrl.
The control signal is wired to u0 and u1 to allow the
distribution of sw functionality. For ctrl == 0, only u0
transmits to d and u1 transmits to d if ctrl == 1.

The forwarding graph G2 obtained after the VMF
decomposition step can contain groups of switch VMFs
chained together with multicast links between two or
more non-switch VMFs as shown in Fig. 12. These
subgraphs with switch VMFs (blue cloud) and multicast
links can be simplified as explained next.
First, the subgraphs Gsetsw consisting of switch VMFs
only are isolated by removing all non-switch VMFs from
G2 and then performing the graph traversal algorithm to
find all the connected components consisting of switch
VMFs. The switching functionality of each isolated
subgraph is then distributed to its upstream VMFs.
Assume the subgraph Gsw = (Fsw,Lsw) is one such
sub-graph (Gsw ∈ Gsetsw) obtained from G that consists of
only switch VMFs and the control signals to all switch
VMFs in Gsw are represented using a single value ctrl.
The task is to distribute the switching functionality of
Gsw to its upstream (non-switch) VMFs. The set of

10

(a)

chrm-

key

s

0

s
1

d
0

1

(b)

chrm-

key

s

0

s

1

d
0

0

3

4

7

0

3

(c)

chrm-

key0

s

00

s
10

d
00

1

0

chrm-

key1

s

01

s
11

d
01

1

0

chrm-

key2

s

02

s
12

d
02

1

0

chrm-

key3

s

03

s
13

d
03

1

0

Fig. 9. 4-way decomposition of the chrm-key VMF. (a) Illustration of operation of the chrm-key VMF. The chrm-key VMF after (b) the
virtual link decomposition step and (c) the VMF decomposition step.

non-switch VMFs whose output is connected to the
VMFs in Gsw is denoted by Usw = {Upstr(fp)|∀f ∈
Fsw,∀p ∈ Pf ;Upstr(f

p) 6⊂ Fsw}. For each VMF
u ∈ Usw, first, the set of non-switch VMFs Du,ctrl0

downstream to Gsw whose input is connected to u
is determined along with the corresponding control
signal, say ctrl = ctrl0, that results in the connection.
Next, a multicast link is created for ctrl = ctrl0
and the VMFs in Du,ctrl0 are added to this multicast
link. Fig. 12 (a) shows a part of VMF-FG with a
switching subgraph Gsw that needs to be distributed.
Assume the VMF u serves the output ports of the
VMFs vctrl00 , vctrl01 , vctrl02 , ...vctrl0n−1 of Gsw when the
control signal value is, say, ctrl0. At the output of u,
we create an output port (multicast link) corresponding
to ctrl0 and also add the inputs of the downstream
VMFs Du,ctrl0 = {dctrl00 , dctrl01 , dctrl02 , ...dctrl0n−1 } to
this multicast link as shown in Fig. 12 (b). Similarly,
corresponding to other control signal values, additional
mutlicast links (on separate output ports) are created for

u and downstream VMFs are added to those mutlicast
links. Then, the process is repeated for the rest of
the upstream VMFs u ∈ Fsw. Lastly, the switching
subgraph Gsw is removed from G2.
Afterwards, the above steps are repeated for the rest of
the switching subgraphs in (Gsetsw).
The upstream VMFs of switching subgraphs in G2 have
now multiple outputs. However, at any instance in time,
one control combination is active and thus traffic flows
only on a single multicast link. Also, the downstream
VMFs ports listen to many multicast links out of which
only one has an input on it at any instance of time.
The forwarding graph returned after the third step is

denoted as G3

Transmit condition Propagation: In G3, if a control
signal value results in the VMF f having no destination
VMFs to transmit then the media processing done by
f is not utilized, thus the control signals for f can be
used to switch-off computation of f and its upstream

11

(a)

pip

s

0

s
1

d
0

ctrl
ctrl==0

0

1

(b)

pip

s

0

s

1

d
0

ctrl

0

3

4

7

(c)

s
00

s
01

s
10

s
11

s
12

s
13

d
00

d
01

d
02

d
03

s
02

s
03

pip
1

sw

ctrl

0

1

2
3

4

ctrl==1

Fig. 10. 4-way decomposition of the pip VMF. (a) Illustration of operation of the pip VMF. The pip VMF after (b) the virtual link decomposition
step and (c) the VMF decomposition step.

Fig. 11. Illustration showing the distribution of switching functionality
of a VMF to its upstream VMFs.

VMFs that only feed f .
Starting from a sink node snk ∈ Fsnk, we travel in the
reverse direction using the DFS algorithm [26] and only
backtrack when we have encountered a source node
fsrc ∈ Fsrc. During the traversal, transmit condition of
the upstream VMF are updated according to its current

transmit conditions and the transmit condition of its
downstream VMF. Consider the three consecutive VMFs
u, v and w during a path traversal starting with snk
through G3, as shown in Fig. 13. Assume, during this
traversal the cumulative transmit condition of v (to w) is
Txsnkv,w and the transmit condition from ’u to v’ is txu,v .
Then, the cumulative transmit condition for the VMF u
to v for this traversal is Txsnku,v = Txsnkv,w AND txu,v ,
where AND is the binary AND operation.
Similarly, the VMF-FG is traversed one-by-one starting
from the remaining sink VMFs meanwhile updating the
transmit condition of the VMFs. The same VMF can
be encountered during various traversals from different
sinks; the transmit condition in such cases is OR
between VMF’s transmit conditions in all traversals.
The forwarding graph returned after the fourth step is

the required decomposed VMF-FG G′.

12

Fig. 12. Distribution of switching functionality of a switching sub-
graph to its upstream VMFs. (a) VMF-FG region showing a switching
subgraph and (b) its distribution to the input VMF u for a given control
value ctrl0.

Fig. 13. Propagation of transmit conditions from the downstream v
VMF to the upstream VMF u.

B. VMF-FG Deployment

In this section, we describe two different VMF-PC
algorithms that can be used to deploy a VMF-FG G,
decomposed or not, on a given MFVi network GI . The
first algorithm is next-fit based VMF-PC algorithm we
refer to as NFPC algorithm and the second algorithm is
based on min k-cut algorithm we refer to as kcut-PC.

1) Next-fit Approach: The pseudo-code for the next-
fit based VMF placement and chaining algorithm is
shown in Alg. 2. The inputs to the algorithm are i) the
directed graph representing the VMF-FG G = (F ,L)
of the media service, ii) the directed graph representing
the MFVi GI = (N,E) and iii) the resource capacity
cap of the physical nodes and links in GI , i.e., cpun
and bwni,nj

. The algorithm outputs the variables α and
γ that denotes VMF-to-node mapping and denotes the
virtual link -to- physical path mapping, respectively.
Before starting, variable initialization is done: quvmf

representing a queue, used res representing the physical
resources currently used in the procedure, α, and γ are
all initialized with φ.

Algorithm 1: Procedure for Next-Fit search

1 Procedure NextFit(f , α, used res,
G = (F ,L), GI = (N,E), cap):
/* start with the last used

node in Nc */
2 for n in Nc do
3 linksf ← {(f, fi) | ∀(f, fi) ∈ L} ;

/* virtual links associated
with f */

4 pths ← chainVMFs(f , α, used res,
linksf , GI , cap, n) ; /* chains f
with neighb. VMFs */
/* check resources on n for

α */
5 if enghRes(f , used res, GI , cap, n)

then
6 return n, pths;
7 end
8 end
9 return None, None;

10 end

Each sink node snk is considered as a starting node for
the BFS traversal through the VMF-FG (l. 3-17) [26].
Until the queue quvmf is empty, the following procedure
is repeated.
quvmf is first de-queued and assigned to f . Using the
NextFit procedure shown in Alg. 1, placement and
chaining of f is attempted. The NextFit procedure
starts searching through Nc server nodes starting with the
last used node and returns with the node having enough
resources to place f and chain it with the previously
placed VMFs. If the PC of f is not successful, the
algorithm is stopped (l. 6). Otherwise, α is updated with
the node mapping of VMF f , γ is updated with the
physical path mapping of the virtual links linking f with
its down-streams VMFs, used res is updated according
to the resource demands of f (l. 6). Next, up-stream
neighbours f ′ of f are assigned to Fnbrs

f . Then, a for
loop is used to loop over Fnbrs

f . If a VMF f ′ ∈ Fnbrs
f

is already placed, it is chained with f (l. 10); otherwise,
it is en-queued to quvmf . If the PC of all the VMFs
is successful, the resource capacity in MFVi (GI) is
updated by referring to used res variable that contains
the current resource usage.
Assuming, the maximum number of VMFs in a VMF-FG
is constant, i.e., |F | ≤ Fmax, it can be concluded from
Alg. 1 and Alg. 2 that the asymptotic time complexity
of the NFPC heuristic is linear in the number of requests
and total server nodes, i.e., O(|R| ∗ |Nc|).

2) k-cut Approach: The pseudo-code for k-cutPC
algorithm is shown in Alg. 5. The output of the

13

Algorithm 2: Algorithm for next-fit based VMF-
PC
/* VMF-FG and MFVi network */
Input : G = (F ,L), GI = (N,E), cap
/* VMF placement and chaining

mapping */
Output : α, γ
Initialize: quvmf , used res, α, γ

1 for snk in Fsnk do
2 En-queue snk to quvmf ;
3 while quvmf 6= φ do
4 De-queue f from quvmf ;
5 NextFit(f , α, used res, G, GI , cap)

; /* Place and chain f */
6 If successful update α, γ, and used res

else stop procedure;
7 Assign upstream neighbours of f to

Fnbrs
f ;

8 for f ′ in Fnbrs
f do

9 if f ′ is placed then
10 Chain f and f ′;
11 If successful update γ and

used res else stop procedure;
12 end
13 else if f ′ 6∈ quvmf then
14 En-queue f ′ to quvmf

15 end
16 end
17 end
18 end

/* All VMFs have been PC’ed */
19 Update cap using used res;

algorithm is same as that of the NFPC algorithm,
whereas the input additionally includes nbst shown in
Alg. 2. Here, nbst is the number of best k-cuts that are
checked for VMF-PC. Before starting, used res, α,
and γ are initialized with φ.
k-cutPC algorithm attempts to first partition each
connected component of VMF-FG G and then deploy
them using the NFPC algorithm shown in Alg. 2. The
algorithm starts with the minimum possible k value
kmin =

∑
f∈C

cpuf/max
n∈N
{cpun}, nbst best kmin-cuts of

G are returned using the procedure NbstKcut.
The pseudo-code for the procedure NbstKcut is shown
in Alg. 4. It uses the random contraction algorithm
RandContr to get a k-cut of an un-directed graph
G [27]. The quality of the generated k-cuts, in terms
of the sum of the weights of the crossing edges, can
be boosted by repeating RandContr Nruns times (l.
4-13) and nbst best k-cuts are generated by running
RandContr Nruns times. By passing nbst = 10, the

ten best cuts are returned that are sequentially checked
for PC in Alg. 5.
One-by-one PC is attempted on each k-cut
(Fcut,Lcut) ∈ Fcuts,Lcuts in the order of increasing
weight until all the VMF clusters of the selected cut
((Fcut,Lcut)) are placed and chained successfully (l.
6-12). If a component C could not be deployed for any
cut (Fcut,Lcut) ∈ Fcuts,Lcuts, the procedure (l. 5-13)
is repeated for an incremented value of k until the
maximum value of k = kmax =| C |. If a component
C could not be deployed for k ∈ [kmin, kmax], the
deployment has failed and the algorithm stops (l. 15).
In case, all the connected components C ∈ Ccpts of G
are placed, resource capacities in GI are updated by
referring to used res.
The k-cutPC algorithm trades off speed for the
amount of used network bandwidth. As the asymptotic
running time of RandContr is O(|L|) and it
is called Nruns = |F |2k−2 ∗ log |F | times from
NbstKcut, the time complexity of NbstKcut is
O(|F |2k−2 ∗ log |F | ∗ |L|). Assuming |F | ≤ Fmax,
the overall time complexity of the k-cutPC is
also O(|R| ∗ |Nc|), albeit the scaling constant
|F |2k−2 ∗ log |F | ∗ |L| results in a lower speed of
k-cutPC as compared to NFPC.

Algorithm 3: Procedure for randomized graph
contraction [27]

1 Procedure RandContr(G = (F,L), k):
2 while | F |> k do
3 Pick a link l = (fi, fj) randomly from L

with probability ∝ bw(l);
4 Merge fi and fj into a single node;
5 remove self-loops;
6 end
7 wt← Sum of weight of all edges crossing

last k nodes;
8 return G, wt
9 end

V. EVALUATION

In this section, we evaluate the impact of VMF-FG
decomposition on media service deployment and
evaluate the performance of the proposed VMF-PC
algorithm. First, the given VMF-FG is decomposed
using the proposed VMF-FG decomposition procedure
for a given M and then the resulting VMF-FG is
deployed using either of the two VMF-PC algorithms–
and their performance is evaluated. The evaluation is
done in terms of four metrics (i) acceptance ratio, (ii)
resource reservation, (iii) resource utilization, and (iv)
end-to-end hops latency. The acceptance ratio gives a

14

Algorithm 4: Procedure for generating nbst best
k cuts

1 Procedure NbstKcut(G = (F,L), k, nbst):
2 Gcltrs,Wcltrs ← φ, φ ; /* Set of

generated cuts and
corresponding weights */

3 Nruns ←| F |(2k−2) ∗ ln | F |;
4 while Nruns > 0 do
5 Gcut, wtcut ← RandContr(G, k)

/* get a random k-cut */
6 if | Gcltrs |≤ nbst then
7 Gcltrs ← (Gcltrs ∪Gcut)

/* gather nbst best cuts

*/
8 end

/* replace worst (max.
weight) cut with Gcut */

9 else if wt < maxWcltrs then
10 Grep ← G ∈ Gcltrs with wt > wtcut

/* k-cut with min.
weight but > wtcut */

11 Replace Grep in Gcltrs with Gcut;
12 end
13 Nruns ← Nruns − 1;
14 end
15 return Gcltrs;
16 end

measure of how likely a VMF-FG can be deployed
on a given MFVi. The resource reservation indicates
the amount of compute and network resources that are
expected to be used by the PC algorithm to deploy the
given set of VMF-FGs. Post-deployment, the control
values for VMFs vary, resulting in varying real-time
usage of resources, which is indicated by the resource
utilization metric. End-to-end latency of the deployed
VMF-FG is an important parameter in live media
production. This metric can be measured in terms of the
number of hops (server nodes) from a source VMF to a
sink VMF in the deployed VMF-FG. As the number of
hops increases, the end-to-end is expected to increase
and vice versa.
Next, we explain the simulation settings used to perform
the evaluations.

A. Simulation settings

The MFVi physical network considered for the
evaluation is fat-tree data center topology. The topology
consists of κ pods, where each pod has (κ/2)2 server
nodes, κ/2 access layer switches, and κ/2 aggregate
layer switches and the core layer contains (κ/2)2

Algorithm 5: Algorithm for the k-cut based
VMF-PC.
/* VMF-FG, MFVi network and # of

best k-cuts */
Input : G = (F ,L), GI = (N,E), cap, nbst
/* VMF placement and chaining

mapping */
Output : α, γ
Initialize: used res, α, γ

1 Ccpts ← ConccCompts(G) ; /* all
connected components of G */

2 for C in Ccpts do
3 Calculate kmin, kmax values;
4 for k in [kmin, kmax] do
5 (Fcuts, Lcuts) = NbstKcut(C, k, nbst)

/* get nbst best k-cuts */
6 for (Fcut,Lcut) in (Fcuts, Lcuts) do
7 PC of cluster (Fcut,Lcut) using Alg.

2;
8 if PC successful then
9 Chain cluster (Fcut,Lcut) with

other VMFs;
10 If cluster chaining successful,

update α, γ, used res and
break;

11 end
12 end
13 break loop if C is PC’d;
14 end
15 If C still not PC’d, stop the algorithm;
16 end
/* All connected components have

been PC’ed */
17 Update cap using used res;

switches. The total number of server nodes in the
topology are κ3/4. Fig. 14 shows a data center in
fat-tree topology with four pods (κ = 4), each pod
containing two aggregate switches, two edge switches,
and four server nodes whereas the core layer contains
four switches.
The parameters and their corresponding values (range)
for media service requests, MFVi, and VMFs are listed
in Table IV. The formats of the video streams are HD
and UHD with resolutions 1920x1080 and 3840x2160,
respectively, and a refresh rate of 30fps. The sub-
sampling assumed here is 4:2:2 where each sample
is encoded with 10 bits. Each server node carries 24
CPU cores and each VMF (un-decomposed) consumes
6 cores per 1000 Mbps of the input bandwidth. The
physical network is based on devices with 10GbE
interfaces.

15

Fig. 14. Fat-tree topology of a data center with κ = 4 pods.

The VMF-FG decomposition algorithm and both
VMF-PC algorithms are written in Python and we have
used networkx package wherever necessary. We use Intel
Xeon machine @2.40GHz and 12GB RAM to carry out
the simulations. Each experiment is repeated ten times
and the corresponding mean and standard deviation are
reported. For each media service request, we select one
VMF-FG from a set of three VMF-FGs shown in Fig.
15.

ns-red dst0src0

G
1

chrm-

key pip

sclsrc2

dst0src1

src0

G
2

dst0src0

G
3

ns-red : noise reduction

clr-corr : color correction

�-corr : gamma correction

vqa: video quality assessment

chrm-key : chroma-keying

pip : picture-in-picture

scl : video scaler

brg-adj : brightness adjustment

clr-corr �-corr

vqa dst1

vqa

brt-adj

Fig. 15. Set of VMF-FGs used in the evaluation.

B. Acceptance ratio

In this evaluation, we report the average acceptance
ratio of media service requests for deployment on a
small data center topology with κ = 4. The arrival of
requests is modeled as a Poisson process with an average
arrival rate of 3 requests per 100 time units (tu) and
the request lifetime is exponentially distributed with an
average of 1000 tu; it is the average time a media service
is deployed on the MFVi. A media service request is

TABLE IV
DEFAULT VALUES/RANGE OF VARIOUS PARAMETERS INVOLVED IN

THE SIMULATION EXPERIMENTS.

Parameter Value or range
κ 4, 8
Request arrival rate (Poisson) 3/(100 units)
Request lifetime (Exponential) 1000 units
CPU/VMF/bw 6 cores/(1000 Mbps)
Video resolution 1920x1080p30
Frame rate 30fps
CPU/node 24 cores
Ph. link BW 10Gbps

deemed accepted if its VMF-FG has been deployed
successfully, i.e., all the VMFs have been assigned to
server nodes and the virtual links are mapped to physical
paths in the MFVi network. Acceptance ratio at time t
is defined as the ratio of the total number of requests
accepted until time t to the total number of requests that
have arrived until t.
The acceptance ratio variation for NFPC and k-cutPC
for t = 0-10000 has been shown in Fig. 16 (a) and
Fig. 16 (b), respectively. Also, to show the impact of
VMF-FG decomposition, the acceptance ratio variation
has been plotted for M = 4 and M = 16. Both in Fig.
16 (a) and Fig. 16 (b), roughly acceptance ratio decreases
with time as the total number of deployed media services
increases and the amount of available physical resources
for the newly arriving requests decreases. It can be
clearly observed from the plots that the acceptance ratio
increases when M increases.

Fig. 16. Acceptance ratio variation over time for the deployment of
50 requests on the MFVi with data center topology κ = 4 (16 server-
nodes) for (a) NFPC and (b) k-cutPC algorithms.

C. Resource reservation
Here we report the physical resources reserved by

the VMF-PC algorithm when deploying a set of media

16

service requests on a bigger MFVi network in fat-tree
topology, with κ = 8. The total amount of resources
present in this topology is sufficient to deploy fifty
media service requests. Fig. 17 (a) shows the total
number of server nodes reserved by the NFPC and
k-cutPC algorithms when deploying fifty requests
with decomposition parameter M = 1, 4, 16. The total
number of server nodes used by the NFPC algorithm
is slightly less compared to the k-cutPC algorithm.
This inefficiency in k-cutPC is because the placement
is carried out at the VMF cluster level whereas the
NFPC algorithm carries out placement at the VMF
level. Another observation is the reduction in the
number of used server nodes Nsrv for both VMF-PC
algorithms with increasing M . For instance, when M
is increased to sixteen from one, Nsrv decreases by
about 20% for both NFPC and k-cutPC. Therefore,
VMF-FG decomposition results in better consolidation
of VMFs on the server nodes. Fig. 17 (b) shows the
total number of physical links Nlnks reserved for both
the VMF-PC algorithms. Similar to Fig. 17 (a), the
NFPC algorithm performs a bit better than the k-cutPC
algorithm because of sequential PC in NFPC as opposed
to the cluster level PC in k-cutPC. Here, an increasing
decomposition does not significantly affect the number
of reserved physical links.

Fig. 17. Variation of resource reservation with M for 50 requests on a
data center topology with 128 server-nodes (κ = 8). (a) Total reserved
server nodes and (b) total reserved physical links.

D. Resource utilization
After the deployment of a media service on the

MFVi network, the media traffic is processed by the
VMFs. Based on the traffic and control signal values,
the physical resource usage of the media service can
vary. Here we report the mean and worst case resource
utilization by the already deployed media services. The
mean resource utilization of a deployed media service is
averaged over the resource utilization values correspond-
ing to all control signal values, whereas the worst case
utilization refers to the minimum resource utilization
value corresponding to a particular control signal value
for that media service.
Fig. 18 (a) shows both the mean case and the worst-
cast normalized CPU usage for the NFPC and k-cutPC
algorithms. As expected, the CPU utilization is better
for NFPC compared to k-cutPC because of better VMF
consolidation in NFPC, which further improves with
the increasing value of M resulting in the better CPU
utilization for the worst case and the mean case for both
VMF-PC algorithms.
In addition to the CPU utilization, inter-node bandwidth
usage is also a useful parameter to compare VMF-PC
algorithms. Fig. 18 (b) shows the mean and worst case
bandwidth (in Gbps) consumed by the deployed media
services for both VMF-PC algorithms. It is evident
from the plots that the total bandwidth utilized by k-
cutPC is less than with NFPC. Since k-cutPC attempts
the deployment of a partitioned VMF-FG where inter
VMF-cluster bandwidth is minimized resulting in lesser
bandwidth utilization than NFPC. Again, with increasing
M , the bandwidth utilization of the deployed media
services is reduced as the chances of neighbouring VMF
placed on the same node increases with M .

E. End-to-end Hops
For a media service, the end-to-end latency is an

important parameter that can be used to check if the
timing requirement of a media service is met. Since,
in this section we only want to highlight the impact of
VMF-FG decomposition on end-to-end delay, we use the
number of hops along the longest path in VMF-FG as
a metric instead of end-to-end delay. A stricter analysis
for end-to-end delay requires packet scheduling of media
streams on a time-sensitive network but it is out of the
scope of this paper. As the impact of VMF-PC algorithm
is different for different VMF-FG, we evaluate end-to-
end hops separately for each VMF-FG. Fig. 19 (a), (b)
and (c) shows average end-to-end hops for the VMF-FGs
shown in Fig. 15. The NFPC algorithm results in poorer
performance, i.e, more end-to-end hops for all VMF-FGs
and decomposition parameters due to the BFS nature of
the algorithm while this phenomenon is attenuated in k-
cutPC due to the cluster-level VMF PC. It is expected

17

Fig. 18. Variation of resource utilization with M for 50 requests on
a data center topology with 128 server-nodes (κ = 8). (a) Normalized
CPU utilization and (b) Total inter-node bandwidth utilization.

that end-to-end latency should reduce with increasing M
as more and more neighboring VNF get placed on the
same server node. However, for G3 the total end-to-end
hops does not increase with M . This can be attributed
to the decomposition of a specific VMF in the VMF-FG
and also then its decomposition procedure. Here, it is
due to the presence of the vqa VMF in the G3 whose
decomposition results in increasing the end-to-end hops
(Fig. 15).

VI. CONCLUSION

IP networking for media transport and general-purpose
compute platforms for media production could help
broadcasters to reduce the total expenditures along with
several other benefits. The adoption of COTS platforms
is expected to increase in the future. The success of the
adoption largely depends on the efficiency of resource
allocation algorithms. To improve the resource allocation
efficiency, we have proposed a procedure for VMF-FG
decomposition that can be used to transform a VMF-FG
to an equivalent but lightweight VMF-FG. For media
service deployment, we present two different VMF-PC
algorithms– NFPC and k-cutPC aimed at improving the
node and network resource usage, respectively. The eval-
uation compares the two VMF-PC algorithms in terms of
four different metrics. The evaluation shows a significant
improvement as a result of VMF-FG decomposition in
terms of these metrics.
MFV requires the transportation of uncompressed media

Fig. 19. Variation of end-to-end hops for (a) G1, (b) G2 and (c) G3
on a data center topology with 128 server-nodes (k = 8).

streams between VMFs in real-time. By scheduling
packet transmissions for the media streams on a time-
sensitive network, the timing metrics (end-to-end delay
and jitter) can be bounded. The problem of VMF-
FG deployment with scheduling will be addressed in
our future research. Moreover, we plan to investigate
the performance of media services implemented using
open-source media processing frameworks. Later, the
setup shall be used to implement the proposed VMF-
FG decomposition procedure.

VII. ACKNOWLEDGMENT

This research was (partially) funded by the Flemish
FWO SBO S003921N VERI-END.com (Verifiable and
elastic end-to-end communication infrastructures for pri-
vate professional environments) project.

REFERENCES

[1] M. Fremeije, “The Rising Need for Media Func-
tion Virtualization,” RedHat, Tech. Rep., Feb.
2018.

[2] “The Road to COTS and the Cloud for real-time
broadcast production,” Nevion, Tech. Rep., Jan.
2018.

18

[3] B. Research and Development. (2018). Composit-
ing and Mixing Video in the Browser, [Online].
Available: https://www.bbc.co.uk/rd/blog/2017-
07 - compositing - mixing - video - browser (visited
on 07/18/2017).

[4] Agile media processing platform, DS-PUB-2-
0916D-EN, Grass Valley.

[5] J. G. Herrera and J. F. Botero, “Resource allo-
cation in NFV: A comprehensive survey,” IEEE
Transactions on Network and Service Manage-
ment, vol. 13, no. 3, pp. 518–532, 2016.

[6] “RP 2110-23:2019 - SMPTE Recommended Prac-
tice - Single Video Essence Transport over Mul-
tiple ST 2110-20 Streams,” RP 2110-23:2019,
pp. 1–27, 2020.

[7] G. P. Sharma, D. Colle, W. Tavernier, and M. Pick-
avet, “Improving resource utilization with virtual
media function decomposition,” in 2020 Fourth
International Conference on Multimedia Comput-
ing, Networking and Applications (MCNA), IEEE,
2020, pp. 31–37.

[8] T. Fautier, “How ott services can match the quality
of broadcast,” SMPTE Motion Imaging Journal,
vol. 129, no. 3, pp. 16–25, 2020. DOI: 10.5594/
JMI.2020.2969763.

[9] Y. Reznik, J. Cenzano, and B. Zhang, “Transition-
ing broadcast to cloud,” Applied Sciences, vol. 11,
no. 2, p. 503, 2021.

[10] H. Koumaras, C. Sakkas, M. A. Kourtis, C.
Xilouris, V. Koumaras, and G. Gardikis, “En-
abling agile video transcoding over sdn/nfv-
enabled networks,” in 2016 International Con-
ference on Telecommunications and Multimedia
(TEMU), IEEE, 2016, pp. 1–5.

[11] T. Kojima, J. J. Stone, J. Chen, and P. N. Gardiner,
“A Practical Approach to IP Live Production,”
in SMPTE 2014 Annual Technical Conference
Exhibition, 2014, pp. 1–16.

[12] A. Kovalick, “Design elements for core ip media
infrastructures,” SMPTE Motion Imaging Journal,
vol. 125, no. 2, pp. 16–23, 2016.

[13] Grass Valley Technology Behind the world’s
largest SMPTE 2110 IP network at BBC cymru
wales new central square HQ, https : / / www .
grassvalley.com/press- releases/2020/20201007-
grass - valley - technology - behind - the - world - s -
largest- smpte- 2110- ip- network- at- bbc- cymru-
wales- new- central- square- hq/, Accessed: 2021-
05-22.

[14] “ST 2110-10:2017 - SMPTE Standard - Profes-
sional Media Over Managed IP Networks: System
Timing and Definitions,” ST 2110-10:2017, pp. 1–
17, 2017.

[15] “ST 2110-20:2017 - SMPTE Standard - Pro-
fessional Media Over Managed IP Networks:
Uncompressed Active Video,” ST 2110-20:2017,
pp. 1–22, 2017.

[16] “ST 2110-30:2017 - SMPTE Standard - Profes-
sional Media Over Managed IP Networks: PCM
Digital Audio,” ST 2110-30:2017, pp. 1–9, 2017.

[17] “ST 2110-40:2018 - SMPTE Standard - Pro-
fessional Media Over Managed IP Networks:
SMPTE ST 291-1 Ancillary Data,” ST 2110-
40:2018, pp. 1–8, 2018.

[18] “ST 2022-6:2012 - SMPTE Standard - Transport
of High Bit Rate Media Signals over IP Networks
(HBRMT),” ST 2022-6:2012, pp. 1–16, 2012.

[19] “ST 2110-21:2017 - SMPTE Standard - Profes-
sional Media Over Managed IP Networks: Traf-
fic Shaping and Delivery Timing for Video,” ST
2110-21:2017, pp. 1–27, 2017.

[20] “ST 2110-31:2018 - SMPTE Standard - Profes-
sional Media Over Managed IP Networks: AES3
Transparent Transport,” ST 2110-31:2017, 2018.

[21] D. Luzuriaga, C.-H. Lung, and M. Funmi-
layo, “Software-based video–audio production
mixer via an ip network,” IEEE Access, vol. 8,
pp. 11 456–11 468, 2020.

[22] B. Research and Development. (2018). High
Speed Networking: Open Sourcing our Kernel
Bypass Work, [Online]. Available: https://www.
bbc . co . uk / rd / blog / 2018 - 04 - high - speed -
networking- open- source - kernel - bypass (visited
on 05/03/2018).

[23] “Broadcast Video Infrastructure Implementation
Using FPGAs,” Altera, Tech. Rep., Mar. 2007.

[24] V. Bruns, T. Richter, B. Ahmed, J. Keinert, and
S. Föel, “Decoding jpeg xs on a gpu,” in 2018
Picture Coding Symposium (PCS), IEEE, 2018,
pp. 111–115.

[25] B. Research and Development. (2014). The IP
network behind the R&D Commonwealth Games
2014 Showcase, [Online]. Available: https://www.
bbc . co . uk / rd / blog / 2014 - 07 - commonwealth -
games-showcase-network (visited on 07/31/2014).

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to algorithms. MIT press,
2009.

[27] A. Gupta, E. Lee, and J. Li, “The karger-stein
algorithm is optimal for k-cut,” in Proceedings
of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, ser. STOC 2020, Chicago,
IL, USA: Association for Computing Machinery,
2020, pp. 473–484, ISBN: 9781450369794. DOI:
10.1145/3357713.3384285. [Online]. Available:
https://doi.org/10.1145/3357713.3384285.

