
Routing and Scheduling for 1+1 Protected DetNet flows

Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, and Mario Pickavet

IDLab, UGent-IMEC,
Technologiepark 126, B-9052 Gent (Zwijnaarde)

Email: firstname.lastname@ugent.be

1 Abstract

Deterministic Networking (DetNet) is attracting a lot of attention lately due to their ability to provide
bounded latency and zero packet loss for time-sensitive applications. In this paper, we formulate the routing
and scheduling problem for 1+1 protected DetNet flows based on Cycle Specified Queuing and Forwarding
(CSQF). The solution to this problem selects two paths between the two endpoints of each service request and
schedules packet transmission on these paths meanwhile maximizing the accepted traffic. We have modeled
the problem using Integer Linear Programming (ILP). We also propose two heuristic approaches: greedy
and Tabu-search (TS) that can perform 1+1 routing and scheduling for a large number of requests in a
reasonable time. Eventually, the performance of the ILP approach and heuristics is evaluated by performing
simulation experiments. The results highlight the scalability of the two heuristics as compared to the ILP
and superior performance of TS over greedy. The trade-off of cycle time on traffic acceptance and end-to-end
delay is also presented.

2 Introduction

A wide range of real-time and safety-critical applications, such as connected cars, industrial control and media
broadcasting, require deterministic performance from the network [?]. Proprietary bus-based technologies
have been employed to build such networks that are currently hard to scale and manage. Although, packet-
based network can offer best effort service but they fail to provide any Quality of Service (QoS) guarantees.
Non-deterministic queuing delay in Ethernet switches can result in unbounded jitter and occasional packet
losses thus rendering traditional Ethernet networks incapable of handling the above-mentioned applications.
For instance, even a single packet loss or excess delay is not tolerable in TV broadcast production, as it
would be detrimental to the viewing experience.
To be able to support time-sensitive applications, the network is required to provide a strict guarantee on
latency, packet loss and jitter. The IEEE Time-sensitive Network (TSN) Task Group (TG) has developed
a collection of standards to standardize the support of time-sensitive applications in Local Area Networks
(LANs) by leveraging mechanisms such as, traffic-shaping, frame preemption, priority scheduling, etc. As
the work done by the TSN WG has focused on LANs, these mechanisms are not suitable for a network
spanning across multiple LANs. The IETF Deterministic Networking (DetNet) working group has been
working on mechanisms that exploit L2 functionality in Time Sensitive Networking (TSN) so that zero
packet loss along with deterministic latency and jitter can be achieved in L3. Particularly, the working
group has described Cycle Specified Queuing and Forwarding (CSQF) based on Segment Routing to achieve
deterministic performance [?] [?].
The end-to-end latency on a path between two points of a network can be bounded by capping the latency of
each node (switch or router) in the path, as the latency component due to transmission delay and propagation
delay is usually constant on a wired link. Cyclical queuing and dequeuing of packets in CSQF can be leveraged
to limit the node latency. We have discussed the operation of CSQF in section 3. But it is worth mentioning
here that by specifying packet transmission the end-to-end latency along any path can be bounded. Moreover,

1

this also ensures that the queue occupancy in any node does not exceed an upper limit. Packet losses due
to congestion thus can be prevented by using queues of appropriate lengths that are not overflowed.
Avoiding packet overflows in queues guarantees zero congestion losses; however, is not the only cause for a
packet loss. To provide protection against equipment (random media and/or memory) failures, dedicated
protection for services is required. 1+1 protection has been a commonly exploited method to provide
high reliability. The idea of 1+1 protection is to use two paths to route packets between the source and
destination as opposed to a single path; the destination selects packets from one path only. In case of a
node/link failure on one of the paths, the destination can just start receiving packets from the other path.
Due to this simplistic architecture, this scheme has been popular in optical networks (SONET/SDH), where
the destination switches to one of the path based on the switching criteria, e.g., signal strength [?]. However,
1+1 protection cannot be naively used for DetNet flows; packet scheduling needs to be performed along the
two paths such that packets can be reliably recovered in case of a failure, as discussed in the next section.
Deploying 1+1 protected DetNet flows entails two components– (1) routing or selecting two paths between
the source and destination and (2) generating reliable packet schedules along these path. The problem
of joint routing and scheduling in DetNets using CSQF has been investigated in [?]. To the best of our
knowledge, modeling of protection schemes in DetNets has not been addressed yet. Therefore, we address
the Routing and Scheduling (RTSCH) problem for 1+1 protected DetNet flows by formulating a Integer
Linear Program (ILP) for it. Additionally, we propose two heuristic algorithms to solve the above problem
instances of reasonable size.
The rest of the paper is organized as follows. The technical background regarding CSQF and 1+1 protection
is provided in section 3. Section 4 details the related works for this paper. The system model and ILP
formulation for the 1+1 DetNet protection problem are described in section 5. In section 6, we have discussed
(a) greedy based heuristic and (b) Tabu-search based heuristic. Section 7 presents the performance evaluation
of the ilp and two heuristics in terms of various metrics. Finally, the paper is concluded in section 8.

3 CSQF and 1+1 protection

This section gives an overview of CSQF and also motivates the use of CSQF for 1+1 protection in DetNet.

3.1 CSQF Overview

IEEE 802.1Qch defines the queue mode and workflow of Cyclic Queuing and Forwarding for time-sensitive
flows in LANs. CQF specifies the division of transmission time at the output interface of every node in even
and odd cycles that correspond to two queues of the interface. During an odd cycle, the packets transmitted
by the upstream nodes are queued in the second queue and the packets received during the previous (even)
cycle are transmitted from the first queue to the downstream node. CQF requires that the packet trans-
mitted by the upstream node in a cycle are received in the same cycle by the downstream node, so that it
can be transmitted by the downstream node in the next cycle. With cyclic queuing/dequeuing, the delay
experienced by the packets along the path can be bounded in terms of the number of hops. The requirement
on transmission and reception in the same cycle restricts the size of network as packets transmitted on the
longer links are not being received in the same cycle (without increasing the cycle time). This requirement
restricts the use of CQF only for LANs and is rather unfit for large-scale DetNet.
Enhancements to CQF have led to the development of the CSQF mechanism [?]. By specifying the sending
time of all nodes along the path between the source and destination. Thus the requirement to send and
receive in the same cycle is relieved by scheduling transmissions based on path delay. Fig. 1 shows the
queuing model of CSQF with three queues (more are also possible), namely, q0, q1 and q2. Packets queued
in one particular queue are dequeued during a cycle and other queues are used to enqueue packets. For
instance, during cycle c = 1, in Fig. 1, q2 is receiving packets whereas q1 is transmitting the packets that it
received during cycle c = 0. During this cycle, q0 is used as a toleration queue to absorb packets received
earlier (due to small variations in transmission or processing time), i.e, packets supposed to be arriving in
cycle c = 2 but are received during c = 1. The roles: receiving, sending and tolerating rotate among q0, q1
and q2 every cycle.
CSQF requires packets to be received, queued and transmitted at specific time instances through the net-

work path. Each node on the path should forward the packet to the right port and select the packet to the

2

q
0

Round robin
queue selection

q
1

q
2

q
0
q
1

q
2

0 1 2 3 4 5 6 7

Transmitting queue

q
0
q
1
q
2
q
0
q
1

Figure 1: Mapping of cycle times to queues in the CSQF operation.

right queue for transmission. Segment Routing (SR) can be leveraged to route and schedule CSQF-based
flows. Each source in SR network appends a header containing a list of instruction to traverse through the
network. An SID (SR Identification), e.g., IPv6 headers, can be used to carry instructions that specify what
interface the packet should be sent from and which queue to select; thus determining which cycle it should
be transmitted in. By stacking multiple SID labels not only the explicit route but also the transmission
schedule along the path is defined without the need of maintaining per-flow state of the flow in network
nodes. Hence, SR enables DetNet to support large CSQF flows and scalability to large networks.
As might be expected, both CQF and CSQF require the nodes in network to have the same sense of timing
to schedule. This is usually achieved by distributing a reasonably stable clock using the Precise Timing Pro-
tocol (PTP) as described in IEEE 802.1AS [?]. Henceforth, we assume all network nodes are synchronized
within sub-microsecond accuracy.

3.2 Scheduled 1+1 protection

DetNet services avoid packet loss because of contention between different flows by traffic regulation combined
with careful packet scheduling. However, service disruption due to failures such as random media failures,
memory errors, etc, needs to be eliminated using a protection mechanism. Dedicated protection schemes,
e.g., 1+1, have been widely used in packet-based networks [?]. In 1+1 protection, an extra path, in addition
to the original path, is used to route packets between the source and destination. At the destination end,
packets received on the two paths are de-duplicated.
Due to different end-to-end delays along the two paths, the reliability of 1+1 protection can be impacted.
This phenomenon is demonstrated in Fig. 2. The Packet Replication Function (PRF) present on the source
is responsible for duplicating the packets, that are received on its input interface onto its two output inter-
faces that are subsequently routed through two different paths p1 and p2. At the destination, the Packet
Elimination Function (PEF) performs packet de-duplication/elimination on packets received on the last links
(p1[−2], p1[−1]) and (p2[−2], p2[−1]) of paths p1 and p2, respectively. Packet de-duplication entails the pres-
ence of sequencing information with packets that can be done by adding a sequence number or timestamp
to the packet while doing duplication at PRF.
The above mentioned functions for 1+1 protection can be implemented via IP encapsulation/decapsulation
of the Detnet flows. For instance, [?] proposed to use P4 match-action tables to implement PRF and PRE
at the source and destination nodes, respectively. As this paper is not concerned with the actual implemen-
tation of these functions, we will next explain only their high-level logic. The PRF simply adds the packet
sequence number to the packet header and then duplicates the packet to send them over the two interfaces
of the source node. With packet sequence information, packet elimination becomes quite straightforward.
The overview of PEF logic is shown in Fig. 2 (b). The PEF remembers the highest sequence number seqlst

3

of the last output cycle and only outputs (output(pkts)) the packets of this cycle if its highest sequence
number seqpkts is higher than seqlst. Next, the PEF updates seqlst to seqpkts. In case, if seqpkts < seqlst,
the packets of this cycle are discarded. The simple logic of a PEF allows it to perform packet elimination
without contributing a significant latency and excessive buffering.
With such a PEF at the destination, a reliable packet elimination is only possible if the packet transmission

(a)

(p
2
[-2], p

2
[-1])

3 2 1 0

3 2 1 0

3 1 0

X
(p

1
[-2], p

1
[-1])

o

(b)

seq
pkts

> seq
lst

seq
lst

<- -1

output(pkts)
seq

lst
<- seq

pkts

pkts <-
recv_cycle()

(c)source
destination

p
2

p
1

p
1
[-2]

p
2
[-2]

p
1
[-1]

p
2
[-1]

oPRF PEF

(p
2
[-2], p

2
[-1])

2 1 0

1 0

1 0

X
(p

1
[-2], p

1
[-1])

o

(d)

2

2

t

Figure 2: Reliable recovery with 1+1 CSQF. (a) 1+1 protection, (b) PEF logic, (c) Naive scheduling and
(d) End-to-end delay aware scheduling.

schedules on the two paths follow the spacing constraint. Let’s assume that each cycle has a bandwidth to
send one packet; the PRF sends four packets in four cycles over the two disjoint paths, where the end-to-end
latency of p2 is higher than p1 as shown in Fig. 2(c). The packet schedules on links (p1[−2], p1[−1]) and
(p2[−2], p2[−1]) and the output o of the PEF is shown. The PEF receives pkt0, pkt1, pkt2, pkt3 on p1 during
cycles 0, 2, 4, 5 and on p2 during cycles 2, 4, 6, 7, respectively. Supposing pkt2 is lost somewhere on p1, the
PEF is not able to recover it from p2, as the next packet received by the PEF with seq > 1 (after recovering
pkt1) is pkt3 on p1, though pkt2 is received on p2 later.
The above situation can be avoided by carefully scheduling packet transmissions on the 1+1 paths. The
spacing constraint on packet schedules ensures that any two cycles in the packet schedule with non-zero
bandwidth allocation must be separated by at least the absolute value of the difference between the end-to-
end delays of the two paths. This constraint ensures reliable recovery as shown in Fig. 2 (d) where the new
schedules adheres to the spacing constraint.
It is worth noting that reliable recovery is possible without satisfying the spacing constraint, though that
requires an additional component: Packet Re-ordering Function (PROF). The PROF would require addi-
tional buffering to store the received packets on the two paths and then perform de-duplication. Though,
de-duplication can be performed efficiently by maintaining a heap data structure for the received packets,
where each heap insertion operation has O(log(n)) complexity; nonetheless, the buffering and additional
computation could contribute a significant latency to the packet recovery process. In this paper, we there-
fore assume that the destination does not perform packet re-ordering.

4 Related Works

Although, the attempts to make networks more deterministic have been going on for several years; however,
the standardization work by the TSN task group in IEEE 802.1 only started in 2015. These standards have
sought to guarantee bounded latency and high reliability in Layer 2. For reliability, the group proposed
IEEE 802.1CB Frame Replication and Elimination for Reliability (FRER) as a new Ethernet sub-protocol

4

[?]. To extend these guarantees to Layer 3, IETF DetNet TG has proposed various mechanisms [?].
With coming up of TSN standards, researchers have shown keen interest in developing algorithms for the
deployment of time-sensitive applications. Numerous studies have focused on generating schedules for time-
triggered traffic in IEEE 802.1Qbv/TSN such that a given objective function is optimized. Craciunas et al.
have used Satisfiability Modulo Theory (SMT) to optimize the network as well as application schedules in a
switched multispeed time-triggered network [?]. In [?], the authors have formulated the problem of routing
and scheduling of time-triggered traffic in TSNs as an ILP to provide real-time guarantees by exploiting
logical centralization paradigm of software-define networking. Approaches based on SMT or ILP generate
exact solutions by expressing the scheduling problem as a constrained optimization or constrained satisfac-
tion problem that are solved by ILP or SMT solvers. The advantage of using exact approaches is that they
generate provable optimal solutions. On account of scheduling problems being NP-hard, exact approaches
do not scale well to flow numbers and network sizes. Alternatively, heuristic and metaheuristic approaches
solve these problem by compromising on the quality of the solution for execution speed. Tabu search in [?]
and incremental backtracking in [?] and [?] have been proposed to speed up the joint RTSCH problem with
close to an optimal solution.
Recently, the RTSCH problem in CSQF-based network has also been addressed in various studies. In [?],
the joint routing and scheduling problem for DetNets is formulated using ILP and two methods–column gen-
eration and dynamic programming, are presented to maximize traffic acceptance while solving the problem.
Moreover, a scalable greedy algorithm is also proposed that is capable of solving the problem with a extra
small gap. Similarly, the authors in [?] have modeled load balancing in DetNets where time-sensitive flows
are split over multiple paths in order to improve network utilization.
Reactive mechanisms such as Dynamic Multipath Optimization (DMPO), through the use of continuous
network monitoring and flow prioritization, can provide a level of reliability by re-routing the critical traffic
during an interruption [?]. However, the restoration time in DPMO spans hundreds of milliseconds to sec-
onds; thus, an interruption can still be detrimental for Detnet flows. Dedicated path protection schemes like
1+1 have been studied in relation to Elastic Optical Networks (EONs). Walkowiak et al. have formulated
the offline problem of routing and spectrum allocation (RSA) to dedicated path protection (DPP) in EONs
as an ILP. Tabu-search-based metaheuristics were proposed to solve the problem instances of reasonable size.
These works are limited largely to the optical networks and hence do not address the problem of dedicated
protection in DetNets. In contrast to these studies, our work focuses on the problem of 1+1 protection
for DetNet flows. We assume the nodes in the given DetNet are CSQF capable and the source and the
destination are capable of performing the necessary operations to provide 1+1 protection.

5 System Model and ILP Formulation

Next, we describe the system model and then formulate the 1+1 RTSCH problem as an ILP. As discussed
earlier, the time at each node’s output port is divided into intervals of equal duration Tc, referred as cycles.
The number of cycles after which the traffic pattern of the application repeats is referred as hypercycle;
therefore, it is sufficient to consider the problem for one hypercycle only. Moreover, it can be assumed
without loss of generality that cycles on each node are aligned, i.e, start at the same time.
Physical infrastructure: The deterministic network infrastructure is represented using a directed graph

G = (N,E), where N is the set of CSQF-capable switches or routers and E is the set of physical links
connecting the nodes in N . For each link e = (ni, nj) ∈ E the cycles in a hypercycle are denoted by C
and the available bandwidth for each cycle c ∈ C denoted by bwni,nj ,c. For instance, on an unused 10G
link during each cycle of Tc=20µs, a total of 25000B or 16x1500B packets are available. The total delay
introduced on the link (ni, nj) is represented by dni,nj , that includes the propagation delay, transmission
delay and processing delay due to nj .
Requests: A set of requests R needs to be RTSCH’ed with 1+1 protection on G. Each request r ∈ R
has a corresponding five-valued tuple Tr = (nrs, n

r
d, bw

r, De2e
r , δDe2e

r) that contains the metadata required
for RTSCH’ing r. Here, nrs and nrd are the r’s source and destination between which two DetNet flows
are required; bwr denotes the r’s bandwidth requirement during one hypercycle; De2e

r and δDe2e
r are the

maximum end-to-end delay and jitter permissible for request r. Fig. 3 shows Tr for request r, nrs = n0,
nrd = n9 and bwr = 64 packets(=92kB); for Tc = 20µs and |C| = 50, r requires full four cycles out of fifty

5

Controller

p1

p2

Topology:
G, delay, etc.

destination

n0

n3

n4

n2
n5

n6

n7

n8

n9

n1

n8

source

R = {... r, ...}
Request set

route+schedule: SID labels

Tr = (no, n9, 64)

Figure 3: Illustration of the 1+1 RTSCH problem.

cycles along each link of p1 and p2.
Variables: Binary variable γrp indicates the routing of r ∈ R using p ∈ Pnr

s,n
r
d ; γrp = 1, if path p is used for

the routing of r; otherwise γrp = 0. Continuous decision variable ωr
p,ni,nj ,c denotes the amount of bandwidth

allocated to request r on physical link (ni, nj) ∈ p, p ∈ Pnr
s,n

r
d during cycle c ∈ C. In addition to binary

variables γrp and ωr
p,ni,nj ,c, we next introduce a few helpers or dependent variables that are required in the

ILP formulation.
Binary variable λr indicates if exactly two disjoint paths are allocated for the routing of r. ρrp,ni,nj ,c is a binary

variable that indicates if non-zero bandwidth is allocated to request r ∈ R on link (ni, nj) ∈ p, p ∈ Pnr
s,n

r
d .

Binary variable ηrp,ni,nj ,c1,c2 = 1, if at least one of ρrp,ni,nj ,c1 and ρrp,ni,nj ,c2 is 0; otherwise ηrp,ni,nj ,c1,c2 = 0.
Table 1 lists the parameters and variables involved in the system model along with a short description.
In the 1+1 RTSCH problem, given set of requests R and DetNet topology G, requests must be routed
and scheduled through two disjoint paths. Fig. 3 shows an illustration where the controller takes as input
DetNet topology G along with request set R and solves the 1+1 RTSCH problem. The controller itself can be
distributed / replicated across multiple instances for robustness and scalability reasons [?, ?] . Nevertheless,
we can assume a single logical controller that is responsible for routing and scheduling detnet flows. The
solution of the 1+1 RTSCH problem, i.e., routes and schedules for requests can then be used to configure
the source nodes with SID label stacks, as discussed earlier.

5.1 ILP Formulation

In this section, the 1+1 RTSCH problem is formulated as an optimization problem. The goal is to find
two disjoint paths between the sender and receiver of each request as well as schedule packet transmission
along the two paths meanwhile optimizing an objective function, e.g., maximizing the total accepted traffic,
minimizing the jitter or end-to-end delay on the two paths.

The DetNet 1+1 protection problem is formulated as a Integer Linear Program (ILP). The objective of
the formulation is to maximize the total accepted traffic for 1+1 RTSCH’ing.

obj : max
∑
r∈R

λrbwr (1)

The constraints for this ILP formulation are listed from (2) to (13). Constraint pair (2-3) ensures exactly
two paths are selected from Pnr

s,n
r
d for the request mapping, where λr indicates 1+1 routing. With this

constraint pair, λr is 0 if
∑

p∈Pnr
s,nr

d

γrp = 0 and is 1 if exactly two paths are selected. The constraint (4)

enforces disjointedness on the selected paths. In this constraint, if selected paths p1 and p2 are disjoint, i.e,
disj(p1, p2) = 1, then the LHS (=1) equals the RHS (=1); however, if they are non-disjoint, i.e, disj(p1, p2) =
0, then the LHS (=1) is greater than the RHS (=0), which shall prevented by the constraint. The number
of packets (bandwidth) allocated to a request during a cycle must be conserved, i.e, the total packets

6

Table 1: Description of the notations used for different parameters and variables involved in the system
model.

Notation Description
G = (N,E) Directed graph representation of the DetNet infrastruc-

ture, where N is the set of nodes and E is the set of
physical links between the nodes.

Ne Ne ⊂ N is the set of all endpoints, i.e, sources and
destinations.

C The set of all cycles in a hypercycle.
bwni,nj ,c Available bandwidth (in bytes) on physical link

(ni, nj) ∈ E during cycle c ∈ C.
dtxni,nj

Transmission delay on link (ni, nj).

dprocn Maximum processing delay on node n.
dni,nj

Total delay on link (ni, nj); dni,nj
= dtxni,nj

+ dprocnj
.

R Set of all requests to be RTSCH’ed on G.
Tr Request tuple Tr = (nrs, n

r
d, bw

r, De2e
r , δDe2e

r) corre-
sponding to r ∈ R, where nrs, n

r
d, bw

r, De2e
r and δDe2e

r

are the source, destination, bandwidth requirement (in
bytes) of r, maximum permissible end-to-end delay and
jitter, respectively.

Pnr
s,n

r
d The set of all paths between the source nrs and the des-

tination nrd of r ∈ R.
γrp Binary variable indicates the routing of r ∈ R on p ∈

Pnr
s,n

r
d .

λr Binary (helper) variable indicates the 1+1 routing of
r ∈ R.

ωr
p,ni,nj ,c Bandwidth (in bytes) allocated to request r ∈ R on link

(ni, nj) ∈ p, p ∈ Pnr
s,n

r
d , during cycle interval c ∈ C.

ρrp,ni,nj ,c Binary (helper) variable indicates if non-zero bandwidth
is allocated to request r ∈ R on link (ni, nj) ∈ p, p ∈
Pnr

s,n
r
d , during cycle interval c ∈ C.

ηrp,ni,nj ,c1,c2 Binary (helper) variable ηrp,ni,nj ,c1,c2 equals 1, if at
least one of ρrp,ni,nj ,c1 and ρrp,ni,nj ,c2 is 0; otherwise
ηrp,ni,nj ,c1,c2 = 0.

transmitted in a cycle at a link should be equal to the total packets transmitted on its downstream link in
the cycle shifted by the link delay. Mathematically, the amount of bandwidth allocated on a link (ni, nj)
of path p during cycle c is equal to the bandwidth allocated on downstream link (nj , nk) on p during cycle
(c + dnj ,nk

)% | C | as expressed in constraint (5). Fig. 4 illustrates the packet scheduling along network
path p. The packet schedule on link (n0, n1) is delayed by the link delay dn0,n1 = 5Tc to get the schedule for
(n1, n2) which is delayed by dn1,n2 = 4Tc to get the schedule for (n2, n3). Cycles 5 and 7 on link (n1, n2) and
cycles 9≡ 1(%8) and 11≡ 3(%8) on link (n2, n3), have bandwidth equal to cycles 0 and 2 on link (n0, n1).
The sum of bandwidth allocated to all requests during a cycle cannot exceed the available bandwidth in the
cycle; this condition is ensured by constraint (6). The total bandwidth allocated in hypercycle C should be
equal to the bandwidth requirement of r; this is guaranteed by constraint (7).
The pair of constraints in (8a-8b) ensures that the same schedule is used on the first link ((p1[0], p1[1]) and
(p2[0], p2[1])) of the two selected paths.
As discussed in section 3, at the receiver, any two cycles in the schedule with non-zero bandwidth should
be spaced by at least by the difference of the end-to-end delays along the two selected paths. The pair
of constraints in (9a-9b) enforces the minimum spacing (|Dp2

− Dp1
|) on the schedules of p1 and p2 near

the receiver end ((p1[−2], p1[−1]), (p2[−2], p2[−1])). For path p1, when two cycles c2 and c1 have minimum
bandwidth allocated, i.e, nrp1,p1[−2],p1[−1],c1,c2 = 0, then the LHS of the constraint pair (c2 − c1) is at least

7

(n
0
, n

1
)

(n
1
, n

2
)

(n
2
, n

3
)

0 1 2 3 4 5 6 7

d(n
1
, n

2
)=5T

c
d(n

2
, n

3
)=4T

c

n
0

n
1

n
2

n
3

p

%8

5 6 7 8 9 10

11 12 13 148 9 10

0 1 2 3 4 5 6 7

Figure 4: Relationship of packet schedules on various links of a path.

|Dp2
−Dp1

|. In other words, ifDp2
≥ Dp1

, then (9a) is active while (9b) is inactive and ifDp2
≤ Dp1

, then then
(9b) is active while (9a) is inactive. If at least one of ρrp1,n′,nr

d,c1
and ρrp1,n′,nr

d,c2
is 0 (nrp1,p1[−2],p1[−1],c1,c2 = 1),

the pair of constraints is inactive.
The binary variable ρrp,ni,nj ,c in constraint (10) is 0 when ωr

p,ni,nj ,c = 0 and is 1, if at least ωr
min is allocated.

For Detnet flows, it is required that the packets transmitted by nrs are received by nrd within a permissible
delay De2e

r . With CSQF, the worst-case delay along a path p can be expressed as
∑

(ni,nj)∈p
dni,nj

[?]. The

constraint in (11) imposes this condition on the two selected paths for each request. As far as the jitter with
CSQF is concerned, its value is dependent on the spacing between any two cycles with non-zero bandwidth.
The maximum (intra-cycle) jitter is independent of the chosen path and is equal to 2Tc. Therefore, the cycle
time should be chosen such that Tc ≤ De2e

r . The constraint trio in (12a, 12b, 12c) ensures ηrp,ni,nj ,c1,c2 is 0
only if both ρrp,ni,nj ,c1 and ρrp,ni,nj ,c2 are 0 and is 1, otherwise. Variables γrp , λr, ρcp,ni,nj ,c and ηrp,ni,nj ,c1,c2
can only take binary values (0 or 1) while ωr

p,ni,nj ,c is bounded; these limits are expressed in constraint (13).∑
p∈Pnr

s,nr
d

γrp ≥ 2λr, ∀r ∈ R. (2)

λr ≥ γrp , ∀r ∈ R, ∀p ∈ Pnr
s,n

r
d . (3)

γrp1
+ γrp2

− 1 <= disj(p1, p2), ∀r ∈ R,∀p1, p2 ∈ Pnr
s,n

r
d . (4)

ωr
p,ni,nj ,c = ωr

p,nj ,nk,(c+dnj,nk
)%|C|

,∀r ∈ R,∀p ∈ Pnr
s,n

r
d ,∀(ni, nj), (nj , nk) ∈ p, ∀c ∈ C.

(5)

∑
r∈R

ωr
p,ni,nj ,c ≤ bwni,nj ,c, (ni, nj) ∈ E,∀c ∈ C. (6)

∑
c∈C

ωr
p,ni,nj ,c = bwrγrp , ∀r ∈ R,∀p ∈ Pnr

s,n
r
d ,∀(ni, nj) ∈ p. (7)

ωr
p1,p1[0],p1[1],c

≥ ωr
p2,p2[0],p2[1],c

+ (γrp1
+ γrp2

− 2)ωmax, ∀r ∈ R,∀p1, p2 ∈ Pnr
s,n

r
d ,∀c ∈ C. (8a)

ωr
p1,p1[0],p1[1],c

≤ ωr
p2,p2[0],p2[1],c

− (γrp1
+ γrp2

− 2)ωmax, ∀r ∈ R,∀p1, p2 ∈ Pnr
s,n

r
d ,∀c ∈ C. (8b)

8

c2ρ
r
p1,p1[−2],p1[−1],c2 − c1ρ

r
p1,p1[−2],p1[−1],c1 ≥

(Dp2
−Dp1

)− Cmaxη
r
p1,p1[−2],p1[−1],c1,c2 ,

∀r ∈ R,∀p1, p2(6= p1) ∈ Pnr
s,n

r
d , (p1[−2], p1[−1]) ∈ p1,∀c1, c2(> c1) ∈ C.

(9a)

c2ρ
r
p1,p1[−2],p1[−1],c2 − c1ρ

r
p1,p1[−2],p1[−1],c1 ≥

(Dp1
−Dp2

)− Cmaxη
r
p1,p1[−2],p1[−1],c1,c2 ,

∀r ∈ R,∀p1, p2(6= p1) ∈ Pnr
s,n

r
d , (p1[−2], p1[−1]) ∈ p1,∀c1, c2(> c1) ∈ C.

(9b)

ωr
minρ

r
p,ni,nj ,c ≤ ω

r
p,ni,nj ,c ≤ ω

r
maxρ

r
p,ni,nj ,c,

∀r ∈ R,∀p ∈ Pnr
s,n

r
d , (ni, nj) ∈ p,∀c ∈ C.

(10)

γrp
∑

(ni,nj)∈p

(dni,nj
) ≤ De2e

r , ∀r ∈ R,∀p ∈ Pnr
s,n

r
d . (11)

ηrp,ni,nj ,c1,c2 ≥ (1− ρrp,ni,nj ,c1), ∀r ∈ R,∀p ∈ Pnr
s,n

r
d , (ni, nj) ∈ p,∀c ∈ C. (12a)

ηrp,ni,nj ,c1,c2 ≥ (1− ρrp,ni,nj ,c2), ∀r ∈ R,∀p ∈ Pnr
s,n

r
d , (ni, nj) ∈ p,∀c ∈ C. (12b)

ηrp,ni,nj ,c1,c2 ≤ (2− ρrp,ni,nj ,c1 − ρ
r
p,ni,nj ,c2), ∀r ∈ R,∀p ∈ Pnr

s,n
r
d , (ni, nj) ∈ p,∀c ∈ C. (12c)

γrp ∈ {0, 1}, λr ∈ {0, 1},ηrp,ni,nj ,c1,c2 ∈ {0, 1}, ω
r
p,ni,nj ,c ∈ [0, ωr

max], ρrp,ni,nj ,c ∈ {0, 1}

∀r ∈ R,∀p ∈ Pnr
s,n

r
d ,∀(ni, nj) ∈ p,∀c, c1, c2 ∈ C.

(13)

6 Heuristics

The ILP approach, presented in the previous section, solves the 1+1 RTSCH problem by navigating through
the solution space consisting of all combinations of variable values. As the total number of variables in the
formulation increases drastically with the size of the problem the resulting solution space is huge. Therefore,
we next present two heuristics that have relatively low execution times and provide sub-optimal but decent
solutions.

6.1 Greedy Heuristic

The pseudocode for the greedy heuristic to solve to solve the 1+1 RTSCH problem is shown in Alg. 1.
The procedure batch rt sch is called with set of requests R arranged in the decreasing order of bwr values.
Thus, greedy rt sch is called first for r with the highest bwr value and last for r with the lowest bwr value
(l. 47).
In greedy rt sch, first, all paths between the two endpoints nrs and nrd are generated and stored in Pnr

s,n
r
d (l.

22). We make use of Networkx’s all simple paths procedure to generate the paths between the given endpoints
[?]. The algorithm utilizes a modified depth-first search for path computation and runs in O(N + E) time
for each path.
Next, a pair of for loops is used to select the first two paths on which routing and scheduling is feasible.
For a path-pair (p1, p2) ∈ Pnr

s,n
r
d×Pnr

s,n
r
d pair, it is checked whether p1 and p2 are disjoint and if enough

cycles are available to generate a feasible schedule; otherwise, the next (p1, p2) pair is considered (l. 27).
Consider for example a path pair p1 and p2, a hypercycle with eight cycles (|C| = 8) and each cycle with a
bandwidth of 16 (1500B) packets, if the difference in the end-to-end delay along p1 and p2 is 4 cycles then
the requests with bwr > 16d8/2e = 32 cannot be routed on p1 and p2, irrespective of the schedule. However,
if the difference in the end-to-end delay is 3 cycles, then only the requests with bwr > 48 are rejected. This

9

step ensures that next step (schedule computation) is not executed if scheduling is not possible for the
selected path pair p1 and p2.
Using gen sch, a schedule is generated at the destination end ((p1[−2], p1[−1])) starting with cycle cstrt
(l. 30). The procedure gen sch greedily attempts to allocate bwr among C cycles of (p1[−2], p1[−1]), with
start cycle cstrt and a minimum cycle spacing of δc (l. 1-20). If such schedule exists (schp1,d 6= φ) at
the destination end, then using procedure sch pth with direction argument dir = −1 (from destination to
source), the schedule for all the links in p1 is generated by (negatively) delaying the destination schedule
schp1,d (l. 31-32). This is required because of the constraint (5), as discussed in section 5. If such a schedule
can be generated, i.e, bandwidth required in the corresponding cycles along all the links on p1 is available,
the schedule for p1 is stored in ωp1

. Again, for the second path, by calling procedure sch pth with the
schedule at the source end of p2, i.e., ωp1

[(p1[0], p1[1])], and the direction argument dir = +1 (from source to
destination), the schedule for all the links of p2 is generated and stored to ωp2 (l. 33-34). In case a schedule
is found, the schedule ωp1 ∪ ωp2 along the two paths is returned (l. 36); otherwise the next (p1, p2) pair is
checked (l. 23-34).
If a request is successfully RTSCH’ed, i.e., ωr 6= φ (l. 49), the link bandwidth in the corresponding cycles
along the two paths is updated using procedure upd bw. Moreover, the total accepted traffic (objval) is
updated and the request schedule is stored in sch.
The path computation step of the heuristic has the time complexity of O(|E||P |) whereas the schedule
generation step run in O(|E||P ||C|2) time. Thus, for a network topology of realistic size the schedule
generation step dominates the overall execution time of the greedy heuristic.

6.2 Tabu-search Heuristic

On the one hand, the greedy heuristic is fast and it returns a suboptimal solution, but on the other hand,
though the ILP solution is optimal it takes a lot of time to compute. There exists a third approach to
generate a close-to-optimal solution in a reasonable time. By employing a metaheuristic such as Tabu-search
(TS) the substantial solution space can be navigated much more efficiently.
The flowchart for TS-based heuristic to solve 1+1 RTSCH problem is shown in Fig. 5. Similar to the greedy
heuristic, the TS heuristic is called with the set of requests R, request tuples T and infrastructure graph G.
First, rt sch is called to RTSCH with srtd(R) and the resulting greedy solution is captured in init soln
object and the total accepted traffic for this solution is stored in bst objval. Before proceeding further, the
variable initialization is done.
The core of the TS heuristic is a while loop that runs for ITRNmax iterations and tries to improve the
current solution init soln taking into account the recent moves as well as the tabu moves. A move to one
of the neighbour of init soln is made using procedure nbr soln (explained in the next paragraph). After
generating the neighbouring solution new soln, it is checked whether new soln is better than bst objval,
i.e, the total accepted traffic for the neighbouring solution new soln.objval is more than bst objval. If yes,
the move is added to the collection of tabu moves along with the tenure TT . This results in prohibition of
undertaking move for the next TT iterations. If new soln is worse than the best score, the move is stored in
moves used so that it is not performed again while the search through the current neighbourhood is carried
out. In case no better solution is found for NOIMP ITRNmax iterations, the best score is relaxed by a
factor of WF so that the search in another neighbourhood can be performed from the next iteration.
The pseudocode for the procedure nbr soln is shown in Alg. 2. The two kinds of moves that can be
undertaken in nbr soln are– i) the request swap move and ii) the path change move, chosen with probability
prreq and 1−prreq, respectively. If the request swap move is chosen, the order of requests soln.R is modified
by swapping two randomly selected requests soln.R[i] and soln.R[j]. Otherwise, if the path change move is
chosen, a request is randomly selected from soln.R it is re-routed and re-scheduled using procedure pth chng.
After completing a move, the procedure nbr soln returns the selected move along with the new solution.
For both kinds, a move is skipped and another one is considered if it was performed recently or it is tabued
in the current iteration.

10

Algorithm 1: Procedure for the greedy-based heuristic to solve the 1+1 RTSCH.

1 Procedure gen sch(c1, bw
r, p, δc, G = (N,E)):

2 bwalc, sch, cnxt ← 0, φ, c1;
3 for c in [c1, C − 1] do
4 if c == cnxt then
5 bwc ← min(bwr − bwalc, bw

c
p[−2],p[−1]);

6 if bwc > 0 then
7 bwalc ← bwalc + bwc;
8 sch[p, p[−2], p[−1], c]← bwc;
9 cnxt ← cnxt + δc;

10 end
11 else
12 cnxt ← cnxt + 1;
13 end

14 end
15 if bwalc >= bwr then
16 return sch;
17 end

18 end
19 return φ;

20 end
21 Procedure greedy rt sch(Tr = (nrs, n

r
d, bw

r), G = (N,E)):
22 Pnr

s,n
r
d ← all paths(nrs, n

r
d);

23 for p1 in Pnr
s,n

r
d do

24 for p2 in Pnr
s,n

r
d do

25 δc← max(1, | Dr
p2
−Dr

p1
|) ;

26 if !disj(p1, p2) or bwr > bwcd|C|/δce then
27 continue;
28 end
29 for cstrt in [0, C − 1] do
30 schp1,d ← gen sch(cstrt, bw

r, p1, δc, G);
31 if schp1,d 6= φ then
32 ωp1

← sch pth(schp1,d, p1, dir =-1);
33 if ωp1

6= φ then
34 ωp2

← sch pth(ωp1
[(p1[0], p1[1])], p2, dir =+1);

35 if ωp2 6= φ then
36 return ωp1 ∪ ωp2

37 end

38 end

39 end

40 end

41 end

42 end
43 return φ;

44 end
45 Procedure rt sch(R, T, G = (N,E)):
46 objval, sch ← 0, φ;
47 for r in R do
48 ωr = greedy rt sch(Tr, G);
49 if ωr 6= φ then
50 objval, sch ← objval + bwr, sch ∪ ωr ;
51 upd bw(ωr, G);

52 end

53 end
54 return sch,objval;

55 end

11

start

itrn >
 ITRN

max
;

bst_objval, sch <-
rt_sch(srted(R), T, G);

init_soln <- {
srted(R), sch, bst_objval};

itrn <- 0;
noimp_itrn <- 0;

moves_used <- 𝛷;
tabu_moves <- 𝛷;

move, new_soln <-
nbr_soln (.., init_soln,..);

new_soln.objval
>

 bst_objval

moves_used.append(
move)

noimp_itrn
>

 NOIMP_ITRN
max

noimp_itrn <- 0
bst_objval <-

bst_objval*WF

tabu_moves[move] <-
itrn+TT

noimp_itrn <- 0

init_soln <- new_soln
moves_used <- 𝛷

bst_objval <-
init_soln.objval

itrn++;

noimp_itrn ++

moves_used <- 𝛷

end

Tabu-search Heuristic

Y

N

Y

N

Y

N

Figure 5: Flowchart depicting TS heuristic to solve the 1+1 RTSCH problem.

12

Algorithm 2: Procedure to generate a neighbouring solution in the Tabu-search heuristic.

1 Procedure nbr soln(itrn, soln, moves used, moves tabu, G):
2 if rand() <= prreq then
3 i, j ← randsel(soln.R), randsel(soln.R) ;

4 while i 6= j and
(
(i, j) 6∈ moves used ∪moves tabu or itrn > moves tabu[(i, j)]

)
do

5 i, j ← randsel(soln.R), randsel(soln.R) ;
6 end
7 swap req(soln.R, i, j);
8 return (i, j), {soln.R, rt sch(soln.R, G)};
9 end

10 else
11 i ← randsel(soln.R) ;
12 while i 6∈ moves used ∪moves tabu or itrn > moves tabu[(i, j)] do
13 i ← randsel(soln.R) ;
14 end
15 sch, objval ← pth chng(soln.R[i], G);
16 return (i), {soln.R, sch, objval};
17 end

18 end

7 Evaluation and Results

In this section, we evaluate the performance of the ILP approach and the two proposed heuristics and then
compare them. First, we describe the simulation setup and list the associated parameters. Then, the results
comparing the different approaches in terms of various metrics are presented.

7.1 Setup and Parameters

All the simulation experiments are performed on a Intel Xeon server machine with quad-core CPU @ 2.40GHz
with 16GB of RAM memory running Ubuntu-16.04 OS. The ILP model for the 1+1 RTSCH problem has
been build using the Python API of IBM’s ILOG CPLEx called DOcplex (Decision Optimization CPLEX
Modeling). Both heuristics are written in Python programming language and the Networkx package is used
to generate paths between two nodes in the given graph.
The cycle time Tc by default assumed to be 20µs and the number of cycles per hypercycle are 50.
For the evaluation of the ILP model and two heuristics, we have considered six topologies. Fig. 6 shows the
topologies hexagon: hex1-hex6, that we have chosen to represent the DetNet infrastructure. Here, hex1 is a
ring topology where two disjoint paths exist between any pair of nodes. hex2 and hex3 are ring topologies
with one and two diagonals, respectively. hex4 also contains two diagonals; though, average difference
between disjoint points is small as compared to hex3. hex5 contains three diagonals and hex6 is a full mesh
where each node is directly connected to the rest of nodes. We have chosen the above topologies to highlight
the impact of connectivity on the average accepted traffic.
Each link in these topologies is a 10G link, thus the bandwidth per cycle bwni,nj ,c is 16x1500B packets per
20µs; the node processing delay and link delay (propagation and transmission) dni,nj are 40µs and 80µs,
respectively.
For each request r ∈ R, the endpoints–source and destination are randomly chosen from the set of topology

vertices and its required bandwidth bwr is randomly chosen with uniform probability in the range [50, 120]
packets (1500B).
Table 2 list the parameters involved in the simulation experiment and their corresponding values/ranges.

13

hex1 hex2 hex3

hex4 hex5 hex6

Figure 6: DetNet topologies used for the evaluation.

Table 2: Default values/range of various parameters involved in the evaluation.
Parameter Value or range Units
Topology hex1, hex2, hex3, hex4,

hex5, hex6
-

Request batch size (| R |) {30, 50, 70} numbers
Request bandwidth size (bwr) [50, 120] packets
Total cycles per hypercycle (|C|) {9, 18, 27, 54, 108, 216} numbers
Cycle time (Tc) {20, 40, 80, 160, 240, 480} µs
Cycle max. bandwidth (bwmax

ni,nj
) {8, 16, 32, 64, 128, 256} packets

Node processing delay (dni,nj
) 40 µs

Links delay (dn) 80 µs

7.2 Performance and Calculation time Trade-off

The 1+1 RTSCH problem is solved using the CPLEX solver and the two heuristics; greedy (GRD) and tabu-
search (TS). Fig. 7 shows the percentage of total for |R| = 30 with hex1 topology. The low traffic acceptance
for the three approaches results from the rejection of many requests due to non-adherence of the spacing
constraint in hex1. On one hand, GRD’s performance is the lowest as it just returns the first feasible solution
with greedy bandwidth allocation for each request. On the other hand, the ILP approach has the highest
performance because it return the optimal solution by searching through the entire solution space. Although,
the performance of the TS approach is inferior to the ILP approach it still outperforms the GRD approach,
especially for large problem sizes as will be highlighted in the next section.
The ILP approach though is the most optimum approach, it may not suitable for large size instances of
the 1+1 RTSCH problem. Even for a reasonable problem size, RTSCH’ing |R| = 30 on hex1 topology, the
CPLEX calculation exceeds 30 minutes. The calculation time increases rapidly when the topology is changed
from hex1 to hex2; in fact, it runs into several hours for |R| ≥ 30 with the hex2 topology. This is because
as the connectivity of the topology increases, the solution space explodes due to the increase in the number
of paths between two nodes thus resulting in very high calculation time. Fig. 8 depicts the evolution of
best bound (Bst-Bnd), objective value (Obj) and integer (Bst-Int) solution with time for |R| = 30 and the
hex2 topolgy. Here Bst-bnd and Obj are the CPLEX’s best objective function value achievable and current
node’s objective values, whereas Bst-int is the objective value of the best integer solution. It can be observed
that most improvements in the integer solution’s objective value are found in early few minutes and there
is a marginal improvement afterwards; nonetheless, the CPLEX calculation time spans several hours. As an
alternative to the ILP approach, the two heuristics scale well with the problem size that return a solution
within a few seconds.
Table 3 lists the CPLEX calculation times for the 1+1 RTSCH problem for |R| = {30, 50, 70} with the hex1

topology. The calculation time for TS is higher as compared to GRD; though, the maximum calculation time
(for |R| = 70) is still within a few seconds. We also observed that the calculation time for GRD and TS does

14

not vary with the topology. The ILP approach, on the other hand, is infeasible for all the problem sizes,
except for |R| = 30 and the hex1 topology, thus the calculation times are not indicated here. Consequently,
it is unfit to solve the reasonable size instances of the 1+1 RTSCH problem and the heuristics should be
employed for such instances.

ILP GRD TS
Approaches

0

5

10

15

20

25

30

35

40

45

%
ac

ce
pte

d t
raf

fic

Figure 7: Comparison of the ILP and heuristics in terms of the percentage of the total accepted traffic.

0 250 500 750 1000 1250 1500 1750
iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 A

cc
ep

te
d

tr
af

fic

Obj
Bst-Int
Bst-bnd

Figure 8: Evolution of the various ILP parameters with time.

Table 3: Approximate calculation time for GRD and TS with the hex1 topology.
|R| GRD time(s) TS time(s)
30 0.004 2.4
50 0.008 4.0
70 0.01 7.0

7.3 Heuristic Performance

Before presenting the performance results for the heuristics, we present the results showing the percentage
of the total acceptable traffic for the topologies hex1-hex6. Fig. 9 shows the percentage of total accepted
traffic satisfying only the spacing constraint assuming each cycle has the maximum bandwidth bwmax

ni,nj
. These

results indicate that as the connectivity of a topology increases, from hex1 to hex3, the average number
of paths between any two nodes increases. As the number of paths increases, the number of requests that
adhere to the spacing constraint increases resulting in an increase of the total accepted traffic.

Next, we report the percentage of the total accepted traffic taking into account the actual cycle bandwidth
bwni,nj ,c instead of maximum cycle bandwidth bwmax

ni,nj
. The total accepted traffic is the sum of the bandwidth

requirements of all requests that can be routed and scheduled. Fig. 10 shows the percentage of the total

15

hex1 hex2 hex3 hex4 hex5 hex6
Topologies

0

20

40

60

80

100

%
 ac

ce
pt

ed
 tr

af
fic

Figure 9: The percentage of the total accepted traffic for different hex topologies, considering only the
spacing constraint.

accepted traffic for the sets of requests with different sizes. The total accepted traffic for the two heuristics
decreases with increasing | R | because increasingly cycles are consumed for the accepted traffic and lesser
bandwidth per cycle is left for the other requests. The total accepted traffic also increases as the connectivity
of the graph increases as the average number of possible paths for each request increases. It can also be
observed that TS outperforms GRD in all the cases. For instance, in hex4 and |R| = 50, the % accepted traffic
for TS is better as compared to GRD by 8%.

30 50 70
Total reqs. R

0

20

40

60

80

100

% a
cce

pte
d t

raf
fic

hex1
GRD
TS

30 50 70
Total reqs. R

0

20

40

60

80

100

% a
cce

pte
d t

raf
fic

hex2
GRD
TS

30 50 70
Total reqs. R

0

20

40

60

80

100

% a
cce

pte
d t

raf
fic

hex3
GRD
TS

30 50 70
Total reqs. R

0

20

40

60

80

100

% a
cce

pte
d t

raf
fic

hex4
GRD
TS

30 50 70
Total reqs. R

0

20

40

60

80

100

% a
cce

pte
d t

raf
fic

hex5
GRD
TS

30 50 70
Total reqs. R

0

20

40

60

80

100

% a
cce

pte
d t

raf
fic

hex6
GRD
TS

Figure 10: The percentage of the total accepted traffic with |R| for different hex topologies.

16

7.4 Impact of Tc

Next, the influence of the cycle time on the performance of the two heuristics is reported. The COST239
network is selected for this evaluation. We selected this network as it has sufficient connectivity as shown in
Fig. 11. Each node is connected to at least four neighbours, thus providing sufficient redundancy for 1 + 1
protection.
Fig. 12 shows the percentage of the total accepted traffic for | R |= 50 on the COST239 network for cycle
times between 20-480µs. It can be observed that as the cycle time is increased, the total accepted traffic
increases for all topologies. As the cycle time increases, the total bandwidth of each cycle increases (though
the total number of cycles in a hypercycle decreases), more requests can be mapped to the same cycle thus
improving the total accepted traffic.

Figure 11: Topology for the pan-European COST239 network. The label corresponding to each link is its
length (in kms).

20 40 80 160 240 480
Cycle time (Tc)

0.0

0.2

0.4

0.6

0.8

%
 a

cc
ep

te
d

tra
ffi

c

COST239
GRD
TS

Figure 12: The influence of Tc on the percentage of the total accepted traffic for |R| = 50 for the COST239
network.

The cycle time also impacts the end-to-end delay between the source and the destination. As described
in [?], the end-to-end delay de2e on path p with N nodes (including source and destination) and cycle time
Tc are related as : de2e = (N − 1)dtxni,nj

+ (N − 2)(dprocnj
+ 2Tc). The average end-to-end delay for | R |= 50

between the endpoints of the accepted requests on the six topologies is depicted in Fig. 13. As expected,
the end-to-end delay increases with increasing cycle time as packets have to be queued for a longer time.

17

20 40 80 160 240 480
Cycle time (Tc)

0

1000

2000

3000

4000

5000

6000

E2
E

de
la

y
(

s)

COST239
GRD
TS

Figure 13: The influence of Tc on the average end-to-end delay for |R| = 50 for the COST239 network.

8 Conclusion

Packet losses due to network congestion can be addressed using DetNet mechanisms such as CSQF. To
guarantee protection against failures in the network, a scheme like 1+1 is required. The problem of 1+1
RTSCH for DetNets is investigated in this paper. To allow reliable recovery, the packet schedules on the
two selected paths should take into account the end-to-end delays. To this end, we formulate the 1+1
RTSCH problem as an ILP. We propose two additional approaches: greedy and Tabu-search heuristics, that
are scalable for relatively large problem sizes. Performance evaluation of these approaches highlights the
influence of the topology and request set size on the average accepted traffic. Although the ILP approach is
exact, it is infeasible beyond small size problem instances. The GRD and TS heuristic trade-off on the solution
quality (< 10%) for its speed such that reasonable size problem instances can be solved in a few seconds
which the ILP approach would require several hours to solve.
Moreover, the trade-off of choosing Tc on total accepted traffic and the end-to-end delay is also discussed.
Professional media flows can be reliably transported using CSQF in a DetNet. The future work will include
the modeling of RTSCH for media services that are represented by Virtual Media Function Forwarding
Graphs (VMF-FG) in contrast to simple services consisting of just source-destination pairs.

9 Acknowledgements

This research was funded by the Flemish FWO SBO S003921N VERI-END.com (Verifiable and elastic end-to-
end communication infrastructures for private professional environments) project, by the FWO project under
grant agreement #G055619N and the Flemish Government under the ”Onderzoeksprogramma Artificiele
Intelligentie (AI) Vlaanderen”.

18

