

Optimization Algorithms for the Deployment of Future Network and
Media Services

Gourav Prateek Sharma

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Computer Science Engineering

Prof. Wouter Tavernier, PhD - Prof. Didier Colle, PhD

Department of Information Technology
Faculty of Engineering and Architecture, Ghent University

Supervisors

June 2022

Wettelijk depot: D/2022/10.500/43
NUR 986, 968
ISBN 978-94-6355-602-6

Members of the Examination Board

Chair

Prof. Patrick De Baets, PhD, Ghent University

Other members entitled to vote

Prof. Davide Careglio, PhD, Universitat Politècnica de Catalunya, Spain
Prof. Mario Pickavet, PhD, Ghent University

Prof. José Soler, PhD, Technical University of Denmark, Denmark
Prof. Dirk Stroobandt, PhD, Ghent University

Supervisors

Prof. Wouter Tavernier, PhD, Ghent University
Prof. Didier Colle, PhD, Ghent University

Acknowledgments

This journey would not have been possible without the support and help
of many people who have contributed in their way.
I am first and foremost thankful to my promoters and supervisors, Prof.
Wouter Tavernier, Prof. Didier Colle and Prof. Mario Pickavet for allowing
me to do my PhD research under their guidance. Their immense knowledge,
direction and timely feedback have been paramount to carry out research
on various topics during my PhD.
Since the start of my PhD, I have been fortunate to share the office with
the most kind and friendly colleagues– Thomas, Steven, Sander, Askhat,
Pieter, Yuhui, Simon, Kenneth and Chong. I thank you all for the pleasant
work environment you have helped to create.
I am thankful to the technical and administrative staff at IDLab: Martine,
Davinia, Joeri and Sai to name a few. Their assistance has been crucial both
to carry out my research as well as to complete administrative formalities
during my stay in Gent.
This acknowledgment is incomplete without mentioning the friends who
made my stay in Gent a memorable experience: Anil, Suhas, Pankaj and
Ranjit. I am thankful to you for all the gossip, evening walks and parties.
Playing badminton with my buddies: Vijay, Gopal, Manu, Kuber, Ashok
and Arun, helped me stay motivated and high-spirited during this journey.
I am grateful to my cousin and cousin-in-law, Pritanshu bhaiya and Neha
bhabhi, who have been extremely kind to me since I arrived in Belgium.
Their company has never let me feel away from home.
Sam Harris from Waking Up deserves a special mention for his guided me-
ditation lessons that have been invaluable, especially during the Corona
pandemic.
I also want to express my gratitude towards my parents and my sister for
being understanding of my decisions. Your compassion and love have been
always with me. Last but not least, a special thanks goes to my fiance An-
nie. Without your unconditional support and encouragement over the past
five years, this dissertation would not have been written.

Ghent, March 2022
Gourav Prateek Sharma

Table of Contents

Acknowledgments i

Samenvatting xxv

Summary xxix

1 Introduction 1

1.1 Networking Overview . 3

1.2 Network Function Virtualization 9

1.2.1 Softwarized Network Functions 10

1.2.2 ETSI NFV architecture 12

1.2.3 Hardware-accelerated VNFs 13

1.3 Software Defined Networking 14

1.4 Media-over-IP and Media Function Virtualization 15

1.4.1 IP Media . 16

1.4.2 Media Function Virtualization 19

1.5 Deterministic Networking . 22

1.5.1 QoS in Packet-switched Networks 23

1.5.1.1 Time Sensitive Networking 24

1.5.1.2 DetNet . 26

1.6 Outline and Research contributions 29

1.6.1 Service Deployment 30

1.6.2 Scheduling algorithms 31

1.6.3 Chapter Ordering . 32

1.7 Publications . 32

1.7.1 Publications in international journals (listed in the
Science Citation Index) 34

1.7.2 Publications in other international journals 34

1.7.3 Publications in international conferences (listed in the
Science Citation Index) 34

1.7.4 Publications in other international conferences 35

References . 36

iv

2 VNF-AAPC: Accelerator-aware VNF Placement and Chain-
ing 43
2.1 Introduction . 44
2.2 Hardware-acceleration in NFV 49

2.2.1 VNF hardware-acceleration example 50
2.2.2 Trade-offs . 52

2.3 Related Works . 54
2.4 Problem Overview . 56
2.5 ILP Formulation . 58

2.5.1 Objective . 60
2.5.2 Constraints . 60

2.5.2.1 Physical Node Constraints 60
2.5.2.2 Physical link constraints 62
2.5.2.3 Accelerator constraints 62
2.5.2.4 Auxiliary Constraints 63

2.6 Proposed Heuristics . 64
2.6.1 Accelerator-agnostic VNF-PC heuristic 64
2.6.2 Accelerator-aware VNF-PC heuristic 66

2.7 Performance evaluation . 70
2.7.1 Setup and Parameters 71

2.7.1.1 Comparison of ILP and Heuristic 75
2.7.1.2 VNF-PC Heuristic Comparison 75

2.7.2 Overall cost analysis 78
2.8 Conclusion . 82
2.9 Acknowledgments . 82
References . 83

3 On Decomposition and Deployment of Virtualized Media
Services 87
3.1 Abstract . 88
3.2 Introduction . 88
3.3 Background and Related Works 90

3.3.1 Media Transport . 91
3.3.1.1 Media Decomposition 94

3.3.2 Virtualized Media Processing 95
3.4 System Model . 97

3.4.1 VMF-FG Decomposition 100
3.4.2 VMF-FG Deployment 110

3.4.2.1 Next-fit Approach 110
3.4.2.2 k-cut Approach 112

3.5 Evaluation . 115
3.5.1 Simulation settings . 115
3.5.2 Acceptance ratio . 116
3.5.3 Resource reservation 117
3.5.4 Resource utilization 118

v

3.5.5 End-to-end Hops . 121
3.6 Conclusion . 121
3.7 Acknowledgments . 123
References . 124

4 Scheduling for Media Function Virtualization 127
4.1 Introduction . 128
4.2 Related Works . 129
4.3 System Model and Algorithm 131

4.3.1 System Model . 131
4.3.2 VMF-FG Scheduling Algorithm 132

4.4 Evaluations . 136
4.4.1 Evaluation setup . 136
4.4.2 End-to-end Delay . 137
4.4.3 Impact of formats . 138

4.5 Conclusion . 138
4.6 Acknowledgments . 140
References . 141

5 Routing and Scheduling for 1+1 Protected DetNet flows 143
5.1 Introduction . 144
5.2 CSQF and 1+1 protection . 146
5.3 Related Works . 148
5.4 System Model and ILP Formulation 149

5.4.1 ILP Formulation . 151
5.5 Heuristics . 155

5.5.1 Greedy Heuristic . 155
5.5.2 Tabu-search Heuristic 157

5.6 Evaluation and Results . 159
5.6.1 Setup and Parameters 160
5.6.2 Performance and Calculation time Trade-off 162
5.6.3 Heuristic Performance 164
5.6.4 Impact of Tc . 165

5.7 Conclusion . 167
5.8 Acknowledgements . 168
References . 169

6 End-to-end Scheduling for Wired-wireless Mixed Networks173
6.1 Introduction . 174
6.2 Related Works . 176
6.3 Problem Statement . 177

6.3.1 Model Description . 178
6.3.2 Wireless link Modeling 180
6.3.3 Problem Definition . 181

6.4 ILP formulation . 183

vi

6.4.1 Constraints . 183
6.4.2 Objective function . 187

6.5 Heuristic . 187
6.6 Evaluations . 188

6.6.1 Evaluation setup . 190
6.6.2 Results . 190

6.6.2.1 ILP and GRD Comparison 192
6.6.2.2 GRD criteria 192
6.6.2.3 Wireless Requests Scheduling 195

6.7 Conclusion . 196
6.8 Acknowledgements . 198
References . 199

7 Conclusion 203
7.1 Virtualized Service Deployment Algorithms 204

7.1.1 Research Contributions 204
7.1.2 Future Directions . 207

7.2 Packet Scheduling Algorithms 208
7.2.1 Research Contributions 208
7.2.2 Future Directions . 209

References . 212

A Dynamic hardware-acceleration of VNFs in NFV environ-
ments 215
A.1 Introduction . 216
A.2 System Architecture and Implementation 217

A.2.1 Service Specific Manager and NFV processes 218
A.2.2 Accelerator allocation algorithm in SSM 219
A.2.3 AES and SHA Acceleration in Dropbear 219
A.2.4 Complete System and Implementation 222

A.3 Related works . 223
A.4 Evaluation and Results . 224

A.4.1 Comparison of original and hardware-accelerated VNF 224
A.4.2 Dynamic accelerator allocation 226

A.5 Conclusion . 228
A.6 Acknowledgments . 228
References . 229

B Hardware accelerator aware VNF-chain recovery 231
B.1 Introduction . 232
B.2 Related Works . 233
B.3 Problem Formulation . 234

B.3.1 Node constraints . 235
B.3.2 Acceleration constraints 235
B.3.3 Other Constraints . 237

vii

B.4 Proposed Algorithm . 237
B.5 Evaluation . 239

B.5.1 Execution time . 241
B.5.2 ILP and Heuristic comparison 241
B.5.3 Impact of accelerator allocation criterion 242

B.6 Conclusion . 243
B.7 Acknowledgments . 244
References . 245

List of Figures

1.1 Average ARPU per month and data (% of ARPU) in Europe
between 2012 and 2017 [3] . 2

1.2 End-to-end connection between two endpoints in a circuit-
switched network. Bandwidth at each link along the path
needs to be reserved for the duration of the connection. . . . 3

1.3 Data flow in a packet-switched network based on the TCP/IP
model. Depending on the node (endpoints, switches and
routers) functionality, packets pass through different protocol
layers. 5

1.4 Encapsulation of application data as it passes through var-
ious layers of the TCP/IP model. Ht, Hn and Hl are the
headers corresponding to the transport, network and data
link, respectively. 7

1.5 Overview of the mobile architecture [15]. 11

1.6 Comparison of (a) VM-based and (b) container-based virtu-
alization. 11

1.7 Reference NFV architecture by ETSI [10]. 12

1.8 Overview of the SDN architecture [19]. 15

1.9 Architecture of an IP-based broadcast studio. The switching
core can be built as, e.g., leaf-spine topology [31]. 17

1.10 Comparison of (a) bundle-based (SMPTE ST 2022-6) and
(b) essence-based media (SMPTE ST 2110) transport. 18

1.11 Encapsulation of video pixel groups as a result of different
protocol layers. 19

1.12 Illustration of a vision mixer functionality; the video stream
on output port o is switched from i0 to i1 with a wipe transition. 20

1.13 Illustration of various layers and components in the MFV
architecture [40]. 21

1.14 Illustration showing a simplified view of a TAS-enabled switch.
During the interval corresponding to the third GCE, only q7
is allowed to dequeue. 27

1.15 Illustration showing CQF operation in a node. 28

1.16 Illustration for queuing operation in a CSQF-enabled node. . 29

x

1.17 Packet forwarding between the three adjacent CSQF-enabled
nodes. The packet sent by n1 in cycle i is received by n2 in
cycle j which is re-sent to n3 in cycle j + 1. 30

1.18 An overview of the key contributions made in this disserta-
tion. For each contribution, the related chapter or appendix
is indicated. 33

2.1 Reference NFV architecture by ETSI [2]. Components shown
in blue needs to be added/updated as a result of inclusion of
hardware-acceleration in NFVi. 45

2.2 Processes involved in (a) accelerator-agnostic and (b) accelerator-
aware VNF instantiation. 47

2.3 Illustration for the setup in (a) non-accelerated and (b) ac-
celerated operation of IPSec VNF. 52

2.4 Comparison of various technologies for VNF implementa-
tion [19]. Green region: CPU+GPU and Orange region:
CPU+FPGA. 54

2.5 Illustration comparing VNF placement in accelerator-agnostic
and accelerator-aware VNF placement scenarios. The CPU
requirement of each VNF is indicated in the box above it. . 58

2.6 Illustration showing placement and chaining in accelerator-
agnostic VNF-PC heuristic on the leaf-spine topology. 66

2.7 Illustration showing placement and chaining in accelerator-
aware VNF-PC heuristic on the leaf-spine topology. 70

2.8 Leaf-spine topology used for the evaluation of the ILP ap-
proach and the heuristic. 73

2.9 Comparison of the ILP model and the heuristic in terms of
total execution times for the leaf-spine topology. 73

2.10 Evolution of ILP’s incumbent solution and lower-bound for
the full execution of CPLEX. 74

2.11 Comparison of ILP model and heuristic in terms of total node
costs in the leaf-spine topology for different number of VNF-
chains. 74

2.12 Comparison of accelerator-agnostic and accelerator-aware heuris-
tics in terms of total node costs, β/α ratio and CPUrem for
the three-tier and leaf-spine topologies. Plots for the three-
tier topology are shown in (a), (b) and (c) and plots in (d),
(e) and (f) correspond to the leaf-spine topology. 78

2.13 Impact of fraction of nodes with accelerator ρnacc on (a) the
total number of required nodes, β/α ratio and CPUrem for
the deployment of 100 VNF-chains on the three-tier topology
(k = 10) using accelerator-agnostic and accelerator-aware
VNF-PC heuristics. 79

xi

2.14 Total server nodes required for the deployment of 100 VNF-
chains on a leaf-spine topology in two cases, (i) when server
nodes are not attached with any hardware accelerator card
and (ii) when sever-nodes are attached with a hardware ac-
celerator card. 80

2.15 Variation of relative node reduction ρred with respect to ad-
ditional hardware accelerator cost for VNF-PC heuristic’s.
Each line represent a locus of all points with fixed value of
cost-saving G. 81

3.1 Illustration of studio architecture based on a data center
topology. 93

3.2 An example of 4-way SD decomposition of 4K video stream. . 95

3.3 The VMF-FG G representation of an example media service. 100

3.4 An illustration of a MISO VMF f 101

3.5 (a) Internals of the MIMO VMF f and (b) its decomposition
into MISO VMFs g, h0, h1, ..., hP ′−1 102

3.6 Flowchart showing the VMF-FG decomposition procedure. . 103

3.7 Illustration for the virtual link decomposition step. (a) The
virtual link (fi, fj) ∈ L and (b) its decomposition by M 104

3.8 4-way decomposition of the chrm-key VMF. (a) Illustration
of operation of the chrm-key VMF. The chrm-key VMF af-
ter (b) the virtual link decomposition step and (c) the VMF
decomposition step. 106

3.9 4-way decomposition of the pip VMF. (a) Illustration of op-
eration of the pip VMF. The pip VMF after (b) the virtual
link decomposition step and (c) the VMF decomposition step. 107

3.10 Illustration showing the distribution of switching functional-
ity of a VMF to its upstream VMFs. 107

3.11 Distribution of switching functionality of a switching sub-
graph to its upstream VMFs. (a) VMF-FG region showing
a switching subgraph and (b) its distribution to the input
VMF u for a given control value ctrl0. 109

3.12 Propagation of transmit conditions from the downstream v
VMF to the upstream VMF u. 110

3.13 Fat-tree topology of a data center with κ = 4 pods. 116

3.14 Set of VMF-FGs used in the evaluation. 116

3.15 Acceptance ratio variation over time for the deployment of
50 requests on the MFVi with data center topology κ = 4
(16 server-nodes) for (a) NFPC and (b) k-cutPC algorithms. 118

3.16 Variation of resource reservation with M for 50 requests on
a data center topology with 128 server-nodes (κ = 8). (a)
Total reserved server nodes and (b) total reserved physical
links. 119

xii

3.17 Variation of resource utilization with M for 50 requests on a
data center topology with 128 server-nodes (κ = 8). (a) Nor-
malized CPU utilization and (b) Total inter-node bandwidth
utilization. 120

3.18 Variation of end-to-end hops for (a) G1, (b) G2 and (c) G3 on
a data center topology with 128 server-nodes (k = 8). 122

4.1 An overview of the VMF-FG scheduling problem. 133

4.2 Illustration for the relationship between different VMF tim-
ing schedules. 134

4.3 Illustration of the VMF-FG used for the evaluation. 137

4.4 (a) The average E2E delay and (b) the average queuing delay
versus cycle time (Tc). 139

4.5 Impact of media formats on resource utilization for different
M . 140

5.1 Reliable recovery with 1+1 CSQF. (a) 1+1 protection, (b)
PEF logic, (c) Naive scheduling and (d) End-to-end delay
aware scheduling. 147

5.2 Illustration of the 1+1 RTSCH problem. 151

5.3 Relationship of packet schedules on various links of a path. . 153

5.4 Flowchart depicting TS heuristic to solve the 1+1 RTSCH
problem. 159

5.5 DetNet topologies used for the evaluation. 161

5.6 Comparison of the ILP and heuristics in terms of the per-
centage of the total accepted traffic. 163

5.7 Evolution of the various ILP parameters with time. 163

5.8 The percentage of the total accepted traffic for different hex
topologies, considering only the spacing constraint. 164

5.9 The percentage of the total accepted traffic with |R| for dif-
ferent hex topologies. 165

5.10 Topology for the pan-European COST239 network. The label
corresponding to each link is its length (in kms). 166

5.11 The influence of Tc on the percentage of the total accepted
traffic for |R| = 50 for the COST239 network. 166

5.12 The influence of Tc on the average end-to-end delay for |R| =
50 for the COST239 network. 167

6.1 Typical architecture of an egress port supporting TAS (IEEE
802.1Qbv). 179

6.2 (a) Half-duplex wireless link modeled as (b) a graph con-
sisting of dummy nodes and simplex links. The half-duplex
property of the wireless link is retained by ensuring all com-
munication traverses the dummy link (nin−ap, nout−ap). . . . 181

xiii

6.3 Illustration for the maximum flow-span of request r. The
length of each dotted arrow indicates its injection time rela-
tive to the start of the request’s cycle. The flow-span of this
request corresponds to the relative injection time (in blue) of
frame 7. 182

6.4 Overview of the end-to-end scheduling problem in a wired-
wireless mixed network. The red, blue and grey boxes repre-
sent the endpoints, WAP and switching nodes in the network,
respectively. 183

6.5 Overview of the frame overlap constraint. f2 of r2 is trans-
mitted before f1 of r1 on common link (ni, nj). 186

6.6 Topologies used for the evaluation: (a) RING and (b) MESH. . . 191
6.7 Box plot of the solve time (in log scale) for ILP and GRD on

two topologies. 193
6.8 Plot showing the evolution of (i) the current objective value

(Obj), (ii) the best integer solution value (int) and (iii) inte-
ger lower bound (L-bnd) with time for |R| = 30 on MESH of
size 9. 193

6.9 The percentage of experiments versus the maximum flow-
span time for (a) RING and (b) MESH topologies. 194

6.10 The percentage of experiments versus the maximum flow-
span time for various greedy criteria on MESH with size 10x10
and |R| = 250 . 195

6.11 The percentage of time allocation for TT flow requests (blue),
guard time (orange) and BE traffic (green) versus the fraction
of wireless requests. 196

6.12 The maximum flow-span time (%-age of cycle time) versus
the fraction of wireless requests. 197

6.13 The average number of GCL entries (per-node) versus the
fraction of wireless requests. 197

A.1 ETSI’s reference architecture for NFV. 217
A.2 Components and NFV processes involved in the accelerator

allocation scheme. 218
A.3 Hardware design for AES en/decryption and SHA hash ac-

celeration on PYNQ. 221
A.4 System implementation for allocation of AES and SHA ac-

celerator on PYNQ board. 223
A.5 Variation of %CPU usage of SSH clients VNFS with changing

traffic for non-accelerated (sw) and accelerated modes (hw). . 225
A.6 Variation of (a), (c): CPU usage and (b), (d): traffic rate with

time corresponding to two and four concurrent SSH tunnels. . 227

B.1 Performance comparison of ILP and heuristic for a single
node failure in terms of lost traffic. 242

xiv

B.2 Performance comparison of ILP and heuristic for multi-node
(three) failure in terms of lost traffic. 243

B.3 Impact of accelerator allocation on the heuristic performance
in terms of lost traffic. 244

List of Tables

1.1 Overview of various TSN standards. 26

2.1 List of VNFs whose performance was improved after the in-
dicated tasks were offloaded using hardware accelerators. . . . 51

2.2 Description of parameters and decision variables 61

2.3 Default values/range of various parameters involved in sim-
ulation experiments. 72

3.1 SMPTE 2110 suite of standards and short description 93

3.2 Example VMFs with short description. 96

3.3 Notations used in the system model for parameters, variables
and procedures. 98

3.4 Default values/range of various parameters involved in the
simulation experiments. 117

4.1 Description of the notations used for different parameters and
variables involved in the system model. 131

4.2 Default values/range of various parameters involved in the
evaluation. 137

5.1 Description of the notations used for different parameters and
variables involved in the system model. 152

5.2 Default values/range of various parameters involved in the
evaluation. 161

5.3 Approximate calculation time for GRD and TS with the hex1

topology. 164

6.1 Overview of various TSN standards. 176

6.2 Description of the notations used for the parameters and vari-
ables involved in the system model. 184

6.3 Default values/range of various parameters involved in the
evaluation. 191

6.4 Overview of various greedy criterion. 194

A.1 Comparison of software and hardware ciphers and hashes. . . 225

xvi

B.1 Description of parameters and decision variables 236
B.2 Description of parameters and decision variables 241
B.3 Comparison of maximum execution time for ILP model and

heuristic algorithm . 242

List of Acronyms

A

ABR Adaptive Bit Rate

ACO Ant-Colony Optimization

AMPP Agile Media Processing Platform

API Application Programming Interface

ARPU Average Revenue Per User

AVB Audio Video Bridging

B

BBC British Broadcast Corporation

BRAM Block RAM

C

C-RAN Cloud RAN

CAPEX Capital Expenditure

CBQ Class-based Queuing

CBS Credit-based Shaper

CNC Centralized Network Controller

CO Control and Optimization

COTS Commercial Off-the-Shelf

xviii

CQF Cyclic Queuing and Forwarding

CRAN Centralized Radio Access Network

CSQF Cycle Specified Queueing and Forwarding

D

DAG Directed Acyclic Graph

DC Data center

DetNet Deterministic Networking

DiffServ Differentiated Service

DMA Direct Memory Access

DMPO Dynamic Multipath Optimization

DoD Department of Defense

DPP Dedicated path protection

DSCP Differentiated Services Code Point

DTH Direct-to-home

E

EMS Element Management System

EON Elastic Optical Network

ETSI European Telecommunications Standards Institute

F

FHD Full-High Definition

FIFO First-in, First-out

FPGA Field Programmable Gate Array

FRER Frame Replication and Elimination for Reliability

xix

G

GCE Gate Control Entry

GCL Gate Control List

GPU Graphics Processing Unit

H

HDL Hardware Description Language

HVS High-Volume server

I

IDS Intrusion Detection System

ILP Integer Linear Program

IntServ Integrated Services

IP Internet Protocol

ISO International Organization for Standardization

ISP Internet Service Provider

K

KPI Key Performance Indicator

L

LAN Local Area Network

LUT Lookup table

xx

M

MANO Management and Orchestration

MF Media Function

MFV Media Function Virtualization

MIMO Multiple Input Multiple Output

MIQCP Mixed Integer Quadratically Constrained Program

MISO Multiple Input Single Output

N

NAT Network Address Translation

NFPC Next-Fit Placement and Chaining

NF Network Function

NFV Network Function Virtualization

NFVO NFV Orchestrator

NIC Network Interface Card

NOS Network Operating System

NPU Network Processing Unit

NW-JSP No-wait Job-shop Scheduling Problem

NW-PSP No-wait Packet Scheduling Problem

O

ONAP Open Network Automation Platform

OPEX Operating Expenditure

OS Operating System

OSI Open Systems Interconnection

OSPF Open Shortest Path First

xxi

OTT Over-the-Top

P

PCE Path Computation Element

PCP Priority Code Point

PEF Packet Elimination Function

PHB Per-hop behavior

PIP Picture-in-Picture

PLC Programmable Logic Controller

PoC Proof-of-Concept

PRF Packet Replication Function

PROF Packet Re-ordering Function

PS Processing system

PTP Precision Time Protocol

Q

QoS Quality of Service

R

RoI Return on Investment

RSA Routing and Spectrum Allocation

RSVP Resource Reservation Protocol

RTP Real-time Transport Protocol

RTSCH Routing and Scheduling

xxii

S

SD Standard Definition

SDI Serial Digital Interface

SDN Software Defined Networking

SFC Service Function Chain

SLA Service-level Agreement

SLFL Simple Lazy Facility Location

SMPTE Society of Motion Picture and Television Engineers

SMT Satisfiability Modulo Theory

SPT Shortest Path Tree

SR Segment Routing

SRP Stream Reservation Protocol

SSM Service-Specific Manager

T

TAPRIO Time-aware Priority Shaper

TAS Time-aware Shaping

TDMA Time-division Multiple Access

TE Traffic Engineering

TG Task Group

TSN Time-Sensitive Networking

TT Time-Triggered

TTM Time-to-market

U

UDP User Datagram Protocol

UHD Ultra-High Definition

xxiii

UNI User Network Interface

V

VIM Virtual Infrastructure Manager

VMF Virtual Media Function

VMF-FG VMF Forwarding Graph

VMF-PC VMF Placement and Chaining

VM Virtual Machine

VNE Virtual Network Embedding

VNFM Virtual Network Function

VNFD VNF Descriptor

VNFM VNF Manager

VNF Virtual Network Function

VoD Video on Demand

VPN Virtual Private Network

W

WAP Wireless Access Point

WFQ Weighted Fair Queuing

WG Working Group

Samenvatting

Mensen proberen al sinds mensenheugenis met elkaar te communiceren. In
de afgelopen decennia heeft communicatie ongekende technologische ontwik-
kelingen gekend die hebben geleid tot het wereldwijd verbonden communi-
catienetwerk dat is uitgegroeid tot wat tegenwoordig het Internet wordt
genoemd. Door het stijgende aantal verbonden gebruikers en de groeiende
populariteit van toepassingen zoals videostreaming en conferencing, is de
hoeveelheid verkeer die door telecomnetwerken stroomt exponentieel ge-
groeid. De groei van het verkeer in combinatie met de dalende Average
Revenue Per User (ARPU) heeft telecomoperators gedwongen om kansen te
creëren die kunnen helpen om extra inkomsten te genereren om dergelijke
onheilspellende trends te compenseren.
De huidige Internet Service Providers (ISPs) bieden meerdere diensten aan
hun klanten in aanvulling op alleen ‘verbinden”hen met het Internet. Dit
is een gevolg van het feit dat verschillende klanten (bijvoorbeeld een Bit-
torent, Industrie 4.0) verschillende eisen van het netwerk kunnen hebben,
waardoor de netwerkoperator functies in het netwerk moet invoeren die
complexe pakketverwerking kunnen uitvoeren naast het doorsturen van be-
richten. Deze functies, ook wel Netwerkfuncties (NFs) genoemd, kunnen
aan elkaar worden gekoppeld om complexe netwerkdiensten te realiseren.
Firewall, Network Address Translation (NAT) en media transcoders zijn
een paar veel gebruikte NFs in telecom netwerken. NFs worden traditio-
neel gëımplementeerd via gespecialiseerde hardware apparaten ook bekend
als middleboxes. Het creëren van netwerkdiensten via middleboxes is de
afgelopen jaren een grote uitdaging geworden om de volgende redenen: (i)
aanzienlijke uitgaven voor het verwerven en beheren van dure middleboxes,
(ii) complexe implementatie-en operationele workflows en (iii) inflexibiliteit
om te schalen met betrekking tot de vraag. Network Function Virtualiza-
tion (NFV) heeft als doel de huidige architectuur van telecomnetwerken te
transformeren naar een architectuur die gebaseerd is op Commercial Off-
the-Shelf (COTS) hardware in plaats van middleboxen. NFV stelt voor om
netwerkdiensten te bouwen via software NFs ook bekend als Virtual Network
Functions (VNFs) gehost op een infrastructuur die bestaat uit standaard
IT- reken -, opslag- en netwerkhardware. Het maken van netwerkservices
vereist het routeren van verkeer via een reeks VNFs. Software Defined Net-
working (SDN) vult NFV aan door flexibele verkeersroutering tussen VNFs
in de gewenste volgorde mogelijk te maken.

xxvi Samenvatting

Ondanks alle voordelen die NFV biedt, is het essentieel dat de prestaties
van de netwerkdienst niet verslechteren wanneer deze wordt gevirtualiseerd.
Er wordt echter opgemerkt dat pakketverwerking in een software die draait
op een CPU zeer uitdagend is wanneer de datasnelheden tientallen Gb/s
overschrijden. bovendien vereisen bepaalde soorten VNFs CPU-intensieve
bewerkingen (bijvoorbeeld cryptografie, mediacompressie) die resulteert in
een hoog stroomverbruik in vergelijking met de overeenkomstige middle-
boxen.
Om de uitdagingen zoals verslechtering van de prestaties en een hoog stroom-
verbruik te overwinnen, wordt het gebruik van herconfigureerbare hardware
voorgesteld. Hardwareversnellers worden verondersteld CPU-intensieve ta-
ken van VNFs te verwijderen, terwijl de rest van de VNF-operaties nog
steeds op de CPU kunnen draaien. Als gevolg van hun opname in de NFV-
Infrastructuur (NFVi) moeten naast andere nfvi-bronnen ook hardwarever-
snellers in aanmerking worden genomen bij het toewijzen van bronnen voor
netwerkdiensten.
Dit brengt ons bij het eerste probleem dat in dit proefschrift wordt onder-
zocht. Het VNF Placement and Chaining (VNF-PC) probleem is aangepast
aan het probleem van accelerator-aware VNF-PC (VNF-AAPC). Het VNF-
AAPC probleem houdt rekening met de toewijzing van hardware accelera-
tors aan VNFs bij het uitvoeren van VNF plaatsing en chaining. Om het
VNF-AAPC probleem aan te pakken, wordt een exacte benadering voorge-
steld gebaseerd op Integer lineaire programmering en een heuristische bena-
dering. Simulatie-experimenten benadrukken de vereiste van de heuristische
benadering om het schaalbaarheidsprobleem met de ILP-benadering aan te
pakken. Ten koste van een kleine prestatie boete, kan de heurist grote
gevallen van het VNF-AAPC probleem oplossen. Bovendien wordt de su-
perioriteit van accelerator-aware benaderingen ten opzichte van accelerator-
agnostische benaderingen, in termen van de totale kosten van knooppunten,
waargenomen.
Analoog aan NFV, MFV is een architectuur waar media transport en ver-
werking wordt bereikt door het gebruik van COTS hardware in plaats van
gespecialiseerde media hardware. Het transport van ongecomprimeerde me-
dia streams op IP-netwerken is aangetoond, maar de verwerking van derge-
lijke multi-gigabits/s streams in software is inefficiënt. De mogelijkheid om
mediastromen met hoge bandbreedte op te splitsen in meerdere streams met
lage bandbreedte en mediaverwerking te virtualiseren, biedt echter de mo-
gelijkheid om virtuele mediadiensten te ontbinden. In dit proefschrift wordt
een gegeneraliseerd VMF-FG-decompositiealgoritme gepresenteerd dat een
functioneel equivalent maar een gëımplementeerde VMF-FG uitvoert. Daar-
naast worden twee VMF-PC-algoritmen voorgesteld die zich bezighouden
met de implementatie van een bepaalde VMF-FG. Een significante verbete-
ring, zowel in termen van CPU-gebruik als netwerkbandbreedte, als gevolg
van VMF-FG ontbinding wordt waargenomen in de simulatieresultaten.
Om de productie van MFV van uitzendkwaliteit te garanderen, is het es-

Summary in Dutch xxvii

sentieel dat real-time communicatie wordt gerealiseerd tussen VMFs. Dit
kan worden bereikt door latentie in netwerkknooppunten te beperken door
speciale wachtrijmechanismen te gebruiken, zoals Cycle Specified Queuing
and Forwarding (CSQF). Op basis van CSQF wordt een hebzuchtige heu-
ristische gepresenteerd die pakketschema’s genereert voor elke virtuele link
in een bepaalde VMF-FG. Door de latentie tussen elke aangrenzende VMF
van de VMF-FG te begrenzen, kan de end-to-end latentie van de imple-
mented mediadienst worden gegarandeerd. De evaluatie van de VMF-FG
scheduling heuristische heeft een vermindering van de end-to-end VMF-FG
vertraging aangetoond, vooral voor hoogwaardige media formaten.
Naast on-premise studio productie, zijn omroepen op zoek naar uitbeste-
den van een aantal productie workflows naar de cloud. Door de strenge
eisen in de omroepindustrie gaat cloudgebaseerde productie gepaard met
verschillende uitdagingen, zoals tijdssynchronisatie van verschillende me-
diacomponenten (bronnen, spoelbakken, verwerkingsfuncties), voorspelbare
verwerkingsvertragingen, enz. Toekomstig onderzoek is nodig om de bereid-
heid van de cloud om broadcast productie te ondersteunen te evalueren.
Wachtrijmechanismen zoals CSQF kunnen ervoor zorgen dat de communi-
catie tussen twee eindpunten wordt gegarandeerd met nul congestie naast
tijdsgaranties. Pakketverliezen als gevolg van storingen (bijvoorbeeld knooppunt-
of linkstoring) in het netwerk kunnen echter nog steeds leiden tot verstoring
van de verkeersstroom. Dergelijke verstoringen kunnen nadelig zijn voor
de uitzending van bijvoorbeeld een live concert of Sportevenement. Om
storingen als gevolg van deze storingen te voorkomen, is speciale padbe-
scherming voorgesteld. In emph1+1 dedicated protection dupliceert het
bronknooppunt pakketten en stuurt ze langs twee disjuncte paden; de ge-
dupliceerde pakketten worden geëlimineerd op het doelknooppunt. Door
1+1 -bescherming te combineren met CSQF-planning, kan nul pakketverlies
naast begrensde latentie worden beloofd voor tijdgevoelige toepassingen.
Hiertoe wordt het probleem van 1+1 routing en scheduling eerst geformu-
leerd en vervolgens opgelost met behulp van drie benaderingen: (I) ILP, (ii)
Greedy en (iii) Tabu-search. De afweging tussen schaalbaarheid en gemid-
deld geaccepteerd verkeer van de drie benaderingen wordt geëvalueerd via
simulatie-experimenten.
Gezien de alomtegenwoordigheid van draadloze netwerken, is het essentieel
om real-time toepassingen in het draadloze domein naast het bekabelde do-
mein te ondersteunen. Onlangs zijn voorstellen gedaan om de nodige Time
Sensitive Networking (TSN) kmechanismen op te nemen in het draadloze
domein. In het bijzonder zijn time-synchronization en Time-aware Shaping
(TAS) gedemonstreerd in bekabelde-draadloze gemengde netwerken. Het
waarborgen van timing garanties in deze gemengde netwerken vereist het
oplossen van het end-to-end pakket planning probleem. Het probleem wordt
eerst geformuleerd als een ILP met een objectieve functie die de maximale
flow-span tijd minimaliseert. Vervolgens wordt, om de schaalbaarheid van
de ILP-aanpak aan te pakken, een hebzuchtige heuristische gepresenteerd.

xxviii Samenvatting

Zoals bevestigd door de simulatie-experimenten, genereert de hebzuchtige
heuristische pakketschema ’ s voor realistische netwerktopologieën in een
redelijke tijd, waarbij de ILP-benadering meestal onpraktisch is. Het is ook
de moeite waard erop te wijzen dat de prestaties van de hebzuchtige heu-
ristische blijkt te worden bëınvloed door de volgorde waarin real-time flow
verzoeken worden gepland.
Concluderend, het eerste deel van het proefschrift gaat over problemen met
de toewijzing van bronnen met betrekking tot de implementatie van gevir-
tualiseerde netwerk-en mediadiensten. De packet scheduling problemen in
de context van real-time applicaties worden behandeld in het tweede deel
van het proefschrift.

Summary

Human beings have been trying to communicate with each other since time
immemorial. In the last few decades, communication has seen unprece-
dented technological advancements leading to the globally connected com-
munication network which has become what is called today the Internet.
Owing to the rising number of connected users and growing popularity of
applications such as video streaming and conferencing, the amount of traffic
flowing through telecom networks has been growing exponentially. Traf-
fic growth accompanied by falling Average Revenue Per User (ARPU) has
forced telecom operators to create opportunities that can help to generate
additional revenues to compensate for such ominous trends.
Today’s Internet Service Providers (ISPs) offer multiple services to their
customers in addition to just “connecting” them to the Internet. This is a
consequence of the fact that different customers (e.g., a Bittorent, Industry
4.0, etc) can have varying demands from the network, thus requiring the
network operator to introduce functions in the network that can perform
complex packet processing beyond message forwarding. These functions,
also known as Network Functions (NFs), can be chained together to realize
complex network services. Firewall, Network Address Translation (NAT)
and media transcoders are a few widely used NFs in telecom networks.
NFs are traditionally implemented via specialized hardware appliances also
known as middleboxes. Creating network services through middleboxes has
become very challenging in recent years due to the following reasons: (i)
considerable expenditures to acquire and manage expensive middleboxes,
(ii) complex deployment and operational workflows and (iii) inflexibility to
scale with respect to demand. Network Function Virtualization (NFV) aims
to transform the current architecture of telecom networks into the one that
is based on Commercial Off-the-Shelf (COTS) hardware instead of middle-
boxes. NFV proposes to build network services via software NFs also known
as Virtual Network Functions (VNFs) hosted on an infrastructure consist-
ing of standard IT compute, storage and networking hardware. Network
service creation requires routing traffic through a series of VNFs. Software
Defined Networking (SDN) complements NFV by enabling flexible traffic
routing between VNFs in the desired order.
Despite all the benefits NFV offers, it is essential that the performance of
the network service does not deteriorate when it is virtualized. However,
it is observed that packet processing in a software running on a CPU is

xxx Summary

extremely challenging when the data rates exceed tens of Gb/s. Moreover,
certain types of VNFs require CPU-intensive operations (e.g., cryptogra-
phy, media compression) that results in high power consumption compared
to the corresponding middleboxes.
To overcome the challenges such as performance deterioration and high
power consumption, the use of reconfigurable hardware is proposed. Hard-
ware accelerators are supposed to offload CPU-intensive tasks from VNFs,
while the rest of the VNF operations can still run on the CPU. As a result
of their inclusion in NFV Infrastructure (NFVi), hardware accelerators in
addition to other NFVi resources should be taken into account when doing
resource allocation for network services.
This brings us to the first problem investigated in this dissertation. The
VNF Placement and Chaining (VNF-PC) problem is adapted to the prob-
lem of accelerator-aware VNF-PC (VNF-AAPC). The VNF-AAPC problem
takes into account the allocation of hardware accelerators to VNFs when
performing VNF placement and chaining. To address the VNF-AAPC prob-
lem, an exact approach based on Integer Linear Programming and a heuris-
tic approach are proposed. Simulation experiments highlight the require-
ment of the heuristic approach to deal with the scalability issue with the
ILP approach. At the cost of a small performance penalty, the heuristic can
solve large instances of the VNF-AAPC problem. Moreover, the superior-
ity of accelerator-aware approaches over accelerator-agnostic approaches, in
terms of the total nodes cost, is observed.
Analogous to NFV, MFV is an architecture where media transport and
processing is achieved through the use of COTS hardware instead of spe-
cialized media hardware. The transport of uncompressed media streams
on IP networks has been demonstrated but the processing of such multi-
gigabits/s streams in software is inefficient. However, the possibility to
split high-bandwidth media streams into multiple low-bandwidth streams
and virtualizing media processing opens up the opportunity to decompose
virtual media services. A generalized VMF-FG decomposition algorithm
is presented in this dissertation that outputs a functionally equivalent but
an optimized VMF-FG. In addition, two VMF-PC algorithms are proposed
that deal with the deployment of a given VMF-FG. A significant improve-
ment, in terms of both CPU usage and network bandwidth, as a result of
VMF-FG decomposition is observed in the simulation results.
To ensure broadcast-quality production of MFV, it is essential that real-
time communication is realized between VMFs. This can be accomplished
by bounding latency in network nodes by employing special queuing mech-
anisms such as Cycle Specified Queuing and Forwarding (CSQF). Based on
CSQF, a greedy heuristic is presented that generates packet schedules for
each virtual link in a given VMF-FG. By bounding the latency between each
adjacent VMF of the VMF-FG, the end-to-end latency of the deployed me-
dia service can be guaranteed. The evaluation of the VMF-FG scheduling
heuristic has shown a reduction in the end-to-end VMF-FG delay, especially

Summary xxxi

for high-quality media formats.
In addition to on-premise studio production, broadcasters are looking to
outsource some production workflows to the cloud. Due to the stringent
requirements in the broadcast industry, cloud-based production is accom-
panied by several challenges, e.g., time synchronization of various media
components (sources, sinks, processing functions), predictable processing
delays, etc. Future research is required to evaluate the readiness of the
cloud to support broadcast production.
Queuing mechanisms such as CSQF can ensure the communication between
two endpoints is guaranteed with zero congestion in addition to timing guar-
antees. However, packet losses due to malfunctioning (e.g., node or link
failure) in the network can still result in traffic flow disruption. Such dis-
ruptions can be detrimental for broadcast production of, e.g., a live concert
or sports event. To prevent disruptions due to these failures, dedicated path
protection has been proposed. In 1+1 dedicated protection, the source node
duplicates packets and routes them along two disjoint paths; the duplicated
packets are eliminated at the destination node. By combining 1+1 protec-
tion with CSQF scheduling, zero packet loss in addition to bounded latency
can be promised for time-sensitive applications. To this end, the problem
of 1+1 routing and scheduling is first formulated and then solved using
three approaches: (i) ILP, (ii) Greedy and (iii) Tabu-search. The trade-off
between scalability and average accepted traffic of the three approaches is
evaluated via simulation experiments.
Given the ubiquity of wireless networks, it is essential to support real-
time applications in the wireless domain in addition to the wired domain.
Recently, proposals have been made to incorporate the necessary Time-
Sensitive Networking (TSN) mechanisms in the wireless domain. In particu-
lar, time-synchronization and Time-aware Shaping (TAS) have been demon-
strated in wired-wireless mixed networks. Ensuring timing guarantees in
these mixed networks necessitates solving the end-to-end packet schedul-
ing problem. The problem is first formulated as an ILP with an objective
function that minimizes the maximum flow-span time. Next, to address the
scalability issue of the ILP approach, a greedy-based heuristic is presented.
As confirmed by the simulation experiments, the greedy heuristic generates
packet schedules for realistic network topologies in a reasonable time, where
the ILP approach tends to be impractical. It is also worth pointing out that
the performance of the greedy heuristic is found to be impacted by the order
in which real-time flow requests are scheduled.
In conclusion, the first part of the dissertation deals with resource alloca-
tion problems concerning the deployment virtualized network and media
services. The packet scheduling problems in the context of real-time appli-
cations are tackled in the second part of the dissertation.

1
Introduction

In recent years, there has been a remarkable growth in the amount of traffic

flowing over computer networks. The global internet traffic grew three-

fold between 2016 and 2021, i.e., with a compound annual growth rate of

26% [1]. Due to the restrictions during the coronavirus pandemic, the Bel-

gian internet traffic alone has doubled [2]. The growing traffic volume has

forced the operators to frequently scale/upgrade their expensive network

infrastructure to keep up the performance. The problem is further wors-

ened by the declining Average Revenue Per User (ARPU). Fig. 1.1 shows

that the ARPU in Europe has been steadily decreasing since 2012 [3]. The

decrease from $30/month in 2012 to $20.40/month in 2017 is attributed to

the highly competitive telecom market in Europe.

In the strive to remain relevant in the market, network operators and con-

tent providers offer various services beyond just connectivity. These services

include firewalling, network caching, media transcoding, etc. Traditionally,

network operators provide these services using specialized hardware appli-

ances called middleboxes. The middlebox approach of delivering network

services has several issues. Specialized hardware is expensive, has lengthy

procurement time and is hard to deploy, manage and operate [4].

Traditional network architectures are now transformed to new architec-

tures based on softwarized network processing hosted on Commercial off-

the-shelf (COTS) hardware. These architectures are more adaptable and

can potentially reduce the total expenditure. In order to truly exploit the

2 Chapter 1

Figure 1.1: Average ARPU per month and data (% of ARPU) in Europe between
2012 and 2017 [3]

advantages of these architectures, efficient resource allocation is necessary.

Furthermore, the network is envisaged to support applications with diverse

requirements from the network. For instance, a BitTorrent client just needs

a connection whereas the remote-control application for an industrial robot

expects reliable communication with an end-to-end latency of a few mil-

liseconds [5]. The same underlying network is expected to support both

the standard traffic that requires no promises from the network and also

the time-sensitive traffic that expects timing guarantees from the network.

To this end, algorithms are required that schedule traffic in the network so

that performance guarantees can be made for time-sensitive traffic. This

dissertation deals with optimization algorithms concerning the deployment

of virtualized network/media services and scheduling of time-sensitive traf-

fic.

This chapter provides the necessary background on the various research

themes covered in the dissertation. In Section 1.1, an overview of computer

networks is provided. Next, in Section 1.2, the motivation behind software-

based network processing and the Network Function Virtualization (NFV)

architecture is discussed. The architectures for media-over-IP and Media

Function Virtualization (MFV) are discussed in Section 1.4. In Section

1.5, various technologies that enable packet-switched networks to support

real-time applications are described. The key research contributions of this

dissertation are summarized in Section 1.6 and the list of publications is

presented in Section 1.7.

Introduction 3

1.1 Networking Overview

A computer network can simply be defined as a collection of nodes intercon-

nected via links that exchange messages between the nodes. An endpoint in

the network is a node where data originates from or terminates into. The

endpoint where data originates is called the source and the endpoint where

data terminates is called the destination. The most popular computer net-

work in the 21st century is the Internet. Today’s Internet is a global network

interconnecting billions of endpoints across the world [1].

Data can be moved through a computer network using two ways: (i) circuit

switching and (ii) packet switching [6]. In circuit switching, the resources

that are needed to support communication, e.g., link bandwidth, between

the endpoints are reserved for the duration of the communication session or

connection. On the contrary, in packet switching, resources are not reserved

but are shared on-demand by network messages resulting in statistical mul-

tiplexing [6]. Therefore, messages in a packet-switched network may have

to wait or queue for access to the next link.

The most popular circuit-switched networks are telephone networks. Before

any actual information is sent, a circuit has to be established between the

two communicating endpoints as shown in Fig. 1.2 [6]. By doing so, the

network reserves bandwidth on the required network links for the duration

of the connection, thus ensuring that the endpoints can communicate at

the required data rate without queuing in intermediate nodes. Due to the

guaranteed rate of communication, circuit switching is also popular in pro-

fessional media production, as explained in Section 1.4.

Most computer networks, including the Internet, are typically packet-

circuit

Figure 1.2: End-to-end connection between two endpoints in a circuit-switched
network. Bandwidth at each link along the path needs to be reserved for the

duration of the connection.

4 Chapter 1

switched networks. As no resource reservation is done, packets have to

wait in a node buffer if the following link is busy transmitting packets from

other flows. Hence, the Internet does not make any guarantee when or if

the packet will be delivered to the destination. This is known as best-effort

service model.

Next, we look at how a packet traverses from the source to the destination

in a packet-switched network.

Communication through a computer network requires that all nodes agree

to a set of unambiguous rules that specify how different nodes can communi-

cate with each other. A protocol is a set of rules that enable communication

between any two nodes of the network. A standardized model called the

Open Systems Interconnection (OSI) was proposed by the International Or-

ganization for Standardization (ISO) in the 1980s. The protocol-oriented

version of the OSI model, proposed by the Department of Defense (DoD),

is called the TCP/IP suite or the Internet protocol suite.

The TCP/IP suite describes various aspects of end-to-end communication,

i.e., how the data should be packetized, addressed, routed and received.

The suite groups these functionalities into five layers as shown in Fig. 1.3.

The application layer or a process at the source produces the data that is

intended to be transferred to the peer application or process on the desti-

nation. The transport layer receives the data produced by the application

layer and attaches to it a header (containing port numbers) to allow process-

to-process delivery of the data. The network layer (L3) receives the packet

from the transport layer and routes datagrams across network boundaries

using IP addresses. To this end, the network layer makes use of routing and

addressing structures. The Internet Protocol (IP) is the ubiquitous network

layer protocol and is considered the “Narrow Waist of the Internet” because

almost all the Internet traffic flows through IP. By having a single network

layer protocol (IP), a large number of applications can be supported over

a large number of networks, i.e., IP act as an inter-connector of networks.

In other words, Local Area Networks (LANs) based on different link layer

technology can be connected as long as they speak IP. The fourth layer from

the top in the TCP/IP stack is the data link layer. The data link layer (L2),

e.g., Ethernet, is responsible for switching frames within the LAN. Here, the

LAN refers to the network consisting of nodes accessible without crossing a

router (explained later). The physical layer at the bottom contains all the

functions required to carry the bitstream over a physical channel.

Although the network layer itself only provides connectionless service be-

tween any two endpoints, a connection-oriented service can be realized, e.g.,

by the transport layer [6]. For example, TCP provides a connection-oriented

service to the application layer based on the connectionless IP. Before any

Introduction 5

data is sent, a three-way “handshake” must be performed between the end-

points to mark the setup of a connection. User Datagram Protocol (UDP),

in contrast, is connectionless because the endpoints can send data without

requiring the handshake. In addition, TCP not only guarantees packet de-

livery (i.e., reliable delivery) but also ensures that packets will be delivered

in the same order in which they were sent (i.e., in-order delivery). In addi-

tion, through flow control TCP ensures that receiver are not overwhelmed

by fast senders.

Application

Transport

Network

Link

Application

Transport

Network

LinkLink LinkLink

Network

Physical Physical Physical Physical Physical

Router

SwitchSwitch

source destination

Figure 1.3: Data flow in a packet-switched network based on the TCP/IP model.
Depending on the node (endpoints, switches and routers) functionality, packets

pass through different protocol layers.

Every node in the network can have its unique address for every layer.

A 32-bit IP address in the IP header is used to identify a host’s interface

in the network. At the data link layer, a Network Interface Card (NIC)

of a host can be uniquely identified, e.g., using a 48-bit MAC address in

the Ethernet header. Port numbers in the transport layer header (e.g., the

16-bit source or destination field in TCP) are used to identify the specific

6 Chapter 1

process or service on the endpoint.

The fourth version of Internet Protocol, called IPv4, uses 32-bit addresses;

thus has an address space of 232 ≈ 4.3B addresses. The IPv4 address space

is running out of available unique addresses due to the proliferation of the

large number of hosts connected to the Internet. A Network Address Trans-

lation (NAT) allows multiple computers in a local network to connect with

the Internet while sharing one public IP address. By maintaining a mapping

of local IP addresses and port numbers, a NAT makes all the outgoing traffic

from a local network appear to be coming from one public address [6]. With

NATs, the requirement to have a separate public IP address for each com-

puter in local networks can be avoided. Consequently, NATs have slowed

the speed with which the available IPv4 addresses are depleting.

NATs have tacked the address exhaustion problem of IPv4 to an extent.

However, the exponential growth in the number of connected devices de-

mands a different solution. Internet Protocol version 6 (IPv6) has been

proposed as a successor to IPv4 to address the long-anticipated problem of

IPv4 address exhaustion. The main difference between IPv4 and IPv6 is the

address space. By using 128-bit addresses, IPv6 offers 2128 addresses, which

is 1028 times more than IPv4. Though the adoption of IPv6 is increasing,

it is widely expected that IPv4 still be used along with IPv6 for the fore-

seeable future. During the transitioning from IPv4 to IPv6, dual stacking,

i.e., having both IPv4 and IPv6 on the same device, has been proposed.

Next, we describe how two hosts can communicate with each other over a

packet-switched network using the TCP/IP protocol suite.

On the source side in the TCP/IP suite, each layer adds its own header

to the data received from the upper layer, as illustrated in Fig. 1.4. This

packing of data at each layer is known as encapsulation. When data tra-

verses from the lowest layer to the highest layer at the destination side, each

layer unpacks its header; this is called decapsulation. The consequence of

the layering is that each layer provides a service to the layer above it while

communicating with the corresponding layer on the other side. For exam-

ple, in order to ensure correct internetworking, the IP layer relies on the

data link layer for intra-network switching.

The transport of data using the TCP/IP suite requires datagram for-

warding at the network layer and frame switching at the data link layer. A

switch (L2 device), when receiving an Ethernet frame, looks up the desti-

nation MAC address (48-bit long field) of the frame in the lookup table to

determine the port to which it should switch the frame [6]. In case no match

is found, the frame is flooded to all ports. A router (L3 device), when re-

ceives a frame, it strips the data link headers to get the IP datagram. Then

it looks for the destination IP address (32-bits long) of the datagram in its

Introduction 7

Message

MessageH
t

MessageH
t

H
n

MessageH
t

H
n

H
l

Application Layer

Transport Layer

Network Layer

Data Link Layer

Figure 1.4: Encapsulation of application data as it passes through various layers
of the TCP/IP model. Ht, Hn and Hl are the headers corresponding to the

transport, network and data link, respectively.

routing table based on longest-prefix matching to switch the datagram to

the required port [6]. The router then again appends the Ethernet header

to generate a frame which is forwarded to the next node connected to the

port. To summarize, the network nodes transport packets by simply looking

at the data link and network layer headers.

In order to route a packet on a particular path, the networks nodes, i.e.,

routers and switches, should know which port the packet should be switched

to. Routers may use, e.g., Open Shortest Path First (OSPF), to exchange

link state information with their neighbouring routers in order to construct

the topology of the network, based on which routing tables can be pop-

ulated with appropriate entries. The processes (e.g., populating routing

tables) responsible for controlling how packets are forwarded in the network

are a part of the control plane. In contrast to the control plane, the actual

forwarding in a node is defined by the data plane or forwarding plane of the

router. The data plane needs to be fast and simple to ensure that packets

can be switched at high-speed (tens of nanoseconds) whereas the control

plane can relatively slower (few seconds). As discussed in section 1.3, a new

architecture is being proposed where the two planes are separated that are

usually coupled in traditional routers and switches.

The original TCP/IP based networks were based on a simple idea: deliver-

ing packets. This idea is highlighted in the end-to-end principle that states

that the network should be relied on only for packet delivery and other

functionalities such as error recovery, security, etc, should be placed at the

8 Chapter 1

endpoints [7]. The network might implement a part of the functionality

but only for the sake of performance enhancement. The initial growth and

innovation are attributed to the end-to-end principle because it allowed to

quickly add features to the endpoints and kept the Internet simple. How-

ever, the idea to keep the Internet as a dumb, fat, digital pipe has since

been violated to support several features in the network.

In order to scale with the rapidly growing network traffic, operators intro-

duce functionalities such as catching and load-balancing. Furthermore, in

order to improve their ARPU, telecom operators offer addtional services be-

yond packet delivery. This is in line with the long list of features, e.g., min-

imum throughput, security, etc, commonly requested from the network [4].

Such functionalities are provisioned by carefully placing Network Func-

tions (NFs) in the network. Other than packet forwarding, an NF can read

and/or modify upper layers (above network layer) headers to implement

the required functionality. NAT, Intrusion detection, address translation,

media transcoding and load balancing are examples of a few NFs that can

be found widely deployed in today’s networks.

The aforementioned network processing functionalities are usually imple-

mented using hardware nodes known as middleboxes [4]. In other words,

a middlebox is an intermediary device that is capable of inspecting, trans-

forming or manipulating network traffic en route to its destination. Some

of the few examples of network middleboxes are as follows:

• Firewalls are used by network administrators to filter certain traffic

based on protocol headers (e.g., network and/or transport), whereas

malicious behavior can be detected by inspecting the contents of pack-

ets using Intrusion Detection Systems (IDS). LANs corresponding

to the multiple sites of a corporate can be connected securely via the

Internet using Virtual Private Networks (VPNs).

• Network Address Translators (NATs) are used to manipulate IP

addresses in packets so that a single public IP address can be shared

among multiple private IP addresses assigned to the endpoints behind

the NAT.

• Transcoders allow encoding the media (audio or video) into different

formats to make it compatible with a large variety of devices (e.g., lap-

tops, mobiles and TVs). The high-quality media formats with huge bi-

trates are transcoded to low bitrate formats before transporting them

over the Internet.

As middleboxes can empower networks to offer various functionalities, they

have been widely deployed in enterprise as well as telecom networks. Typ-

ically, these functionalities are implemented using proprietary specialized

Introduction 9

hardware. For example, a NAT box cannot be used for transcoding a

video stream; in addition to that, it might not be possible to upgrade the

transcoder middlebox to en/decode the latest format of video streaming.

An elaborate discussion on the challenges faced by the network operators

concerning middleboxes is presented in the next section.

1.2 Network Function Virtualization

Traditionally, the deployment of middleboxes is done in an ad-hoc basis, i.e.,

depending on the requirement of new functionality, a middlebox that imple-

ments the functionality is purchased and then deployed at the appropriate

location in the network. As estimated by J. Sherry et al., about one-third

of the total boxes in enterprise network consist of middleboxes which them-

selves comprise of various types (e.g., IDS, load-balancers, firewalls, etc) [4].

The traditional architecture of network service implementation using mid-

dleboxes poses the following challenges:

1. High Expenditure: The Capital Expenditure (OPEX) and Operat-

ing Expenditure (OPEX) associated with middleboxes are huge. The

upfront investment to buy hardware equipment can go up millions of

dollars. Further, huge trained manpower is required to manage such

specialized hardware deployed across the network. These costs are fur-

ther exacerbated by the requirement to periodically upgrade and/or

replace the hardware to keep up with the increasing traffic volume.

2. Deployment and Operational issues: Installation, monitoring,

diagnostics and configuration of middleboxes deployed across the net-

work is quite challenging due to the unique expertise required for each

type of middlebox. The operational tasks are made more difficult due

to the proprietary Application Programming Interfaces (API) exposed

by middleboxes supplied from different vendors.

3. Inflexibility: Network operators have to over-provision middleboxes

keeping in view the peak demand of the day (not the average demand).

Additional resources have to be kept as a backup in case some middle-

boxes fail. Furthermore, the innovation in creating network services is

impeded due to the proprietary and blackbox nature of middleboxes.

The above-mentioned challenges need to be addressed in order to make

the telecom business viable. This has pressured telecom operators to seek

network architectures that can help lower the CAPEX and OPEX while

being able to meet the customer requirements. By bringing software and

10 Chapter 1

standard IT virtualization technologies into the network, these challenges

are expected to be addressed.

1.2.1 Softwarized Network Functions

A middlebox is a hardware implementation of an NF; however, the same NF

can be implemented in software and deployed on general-purpose hardware.

Such an architecture where network processing is done using software NFs

running over Commercial Off-the-Shelf (COTS) hardware instead of mid-

dleboxes is known as Network Function Virtualization (NFV). By avoiding

vendor lock-in, NFV can potentially reduce huge expenditures [8]. The

software implementation of an NF is known as Virtual Network Function

(VNF). Next, we discuss an example use case for NFV: virtualization of

mobile packet core.

A mobile network typically has two parts (i) the Radio access Network

(RAN) connecting the base station and the User Equipment (UE) and (ii)

the packet core that connects the RAN with external networks. A basic

architecture of a mobile network with the component NFs is shown in Fig.

1.5. The core network is composed of the Service Gateway (SGW), the

Packet Data Network (PDN) Gateway (PGW) and the Mobility Manage-

ment Entity (MME) and the Home Subscriber Server (HSS). The MME and

the HSS form the control plane whereas the SGW and the PGW form the

user plane. The gateways: SGW and PGW are responsible for transporting

the user IP traffic between the UE and the Internet. The SGW routes the

traffic coming from the UE to the packet core and vice-versa. It serves as

an anchor while the UE moves between different base stations. The PGW

deals with the routing of traffic coming from and to external networks along

with other operations such as IP address allocation and packet filtering.

The NFs in the packet core are seen as potential candidates for virtualiza-

tion in future architectures. With the NFs in packet core virtualized and

hosted on a standard NFVi, telecom operators can expect to significantly

reduce their CAPEX and OPEX along with other NFV benefits [14].

Most often, the physical resources (i.e., servers, storage and network) in

the NFVi are virtualized due to reasons such as efficient resource utiliza-

tion, easy management and faster provisioning. Virtual Machines (VMs)

and Docker containers are two standard virtualization technologies of to-

day. A Virtual Network Function (VNF) consists of one or more such VMs

or containers. Next, we give an introduction to these two virtualization

technologies.

A VM is an emulation or virtual representation on a physical computer,

i.e., instead of using hardware directly to run programs, a VM uses the

software abstraction of hardware. The physical computer is referred to as

Introduction 11

Packet core

SGW PGW

PGW PGW

Internet

Control Plane

User Plane

Radio Access Network

Figure 1.5: Overview of the mobile architecture [15].

the host whereas the VM is referred to as the guest. Multiple guests, each

running its own Operating System (OS), can run on the same host, e.g.,

a virtual MacOS and UbuntuOS can run on the same host. A software

called Hypervisor is responsible for allocating resources, i.e., CPU, memory

and storage, to the guests. There are two main types of hypervisors: Type

1 hypervisors (e.g., Xen, Microsoft Hyper V) run directly above the host

hardware thus avoiding the additional OS layer, while Type 2 hypervisors

(e.g., Virtualbox, VMware Workstation) require an OS layer like a typical

computer program. Each guest VM runs a full-fledged OS to support the

application running in it.

In contrast to a VM, a container running on a host shares the host’s OS, as

Hardware

Host OS

Hypervisor (Type 2)

GuestOS GuestOS GuestOS

app1 app2 app3

Hardware

Host OS

Container engine

app1 app2 app3

(a) (b)

Figure 1.6: Comparison of (a) VM-based and (b) container-based virtualization.

12 Chapter 1

illustrated in Fig. 1.6. Using a container engine an OS can be abstracted to

run multiple containers similar to a hypervisor that virtualizes the underly-

ing hardware. This makes VNFs based on containers very lightweight and

less resource-intensive as compared to VM-based VMFs. However, multiple

container VNFs sharing an OS are weakly isolated as compared to VM-

based VNFs; this poses a security risk when VNFs from multiple tenants

run on the same machine [9]. Both these virtualization technologies have

their advantages and disadvantages and can be used in NFV on their own

or in combination.

1.2.2 ETSI NFV architecture

NFV leverages the previously discussed virtualization technologies to host

telecom services. The European Telecommunications Standards Institute

(ETSI) has released a number of standards around specifications of various

components and interfaces in the NFV architecture. The ETSI NFV archi-

tectural framework is shown in Fig. 1.7 [10]. The main components of this

architecture relevant to this dissertation are (i) VNFs, (ii) NFV Infrastruc-

ture (NFVi) and NFV Management and Orchestration (MANO).

The NFVi layer consists of all the hardware and software components re-

Compute

Virtualization Layer

vCompute

VNF

 manager(s)

Orchestrator

Virtual
Infrastructure

Manager(s)

NFV-MANO

Ve-Vnfm

Nf-Vi

Or-Vi

Or-Vnfm

Vi-Vnfm

NFVI

OSS/BSS

Service, VNF, infra. description

Se-Ma

Os-Ma

Storage Network

vStorage vNetwork

VNF

EMS

VNF

EMS

VNF

EMS

Figure 1.7: Reference NFV architecture by ETSI [10].

quired to host afore-mentioned VNFs. The physical infrastructure consists

of COTS resources for compute, network, storage, etc. The physical hard-

ware is usually abstracted via a virtualization layer (Hypervisor or container

Introduction 13

engine) so that resources can be logically partitioned and allocated to VNFs.

The deployment and re-assignment of VNFs on NFVi is easier and faster as

compared to middleboxes. A complex network service can be implemented

by chaining multiple VNFs together in a specific configuration. VNFs can

be deployed, scaled and configured on-demand thus making the rolling out

of upgraded or new network services rather quickly. The faster roll-out of

services entails automating the orchestration of NFVi resources for network

services. Other service management tasks such as monitoring, configura-

tion and licensing are also required to ensure scalability and performance

requirements [11]. In an NFV environment, the NFV MANO block is re-

sponsible for various tasks relevant to the management and orchestration of

virtualized network services. These tasks are carried out using three sub-

components of MANO: (i) Virtual Infrastructure Manager (VIM) , (ii)

VNF Manager (VNFM) (iii) NFV Orchestrator (NFVO).

The VIM controls and manages the compute, network and storage resources

in NFVi. The VNF manager is responsible for the tasks concerning the

lifecycle management of VNFs. This includes installation, scaling, updat-

ing and termination of VNFs. The NFVO is in charge of managing the

lifecycle of network services and also orchestrating NFVi resources for net-

work services. The NFVO coordinates with the VNFM to instantiate VNFs

and manages the deployment of network services. For resource orchestra-

tion, it engages with the VIM to ensure optimized allocation of resources is

achieved. OSM MANO and ONAP are two main open source Management

and Orchestration (MANO) software stacks compliant with ETSI NFV ar-

chitecture [12], [13].

1.2.3 Hardware-accelerated VNFs

Transitioning from middlebox-based network architecture to the one based

on VNFs can potentially result in cost-savings, ease of management and up-

grade, faster service roll-outs, etc. Despite these benefits, a major obstacle

before the widespread adoption of NFV by network operators is performance

degradation. With NFV, VNF-chains are expected to process network traf-

fic exceeding tens of Gbps. Meeting the performance of middleboxes with

VNFs running on COTS hardware is extremely challenging [24]. For ex-

ample, at 10Gbps the time available to process a 64B packet is less than

52ns while the memory latency is in tens of ns. Moreover, VNFs are very

inefficient as compared to middleboxes in terms of power consumption when

processing the same amount of traffic [25].

The NFV performance challenge has compelled researchers to look at hard-

ware acceleration techniques for VNFs. The idea of VNF hardware accelera-

tion is to offload CPU-intensive tasks from a VNF to an externally attached

14 Chapter 1

hardware, e.g., a Field Programmable Gate Array (FPGA), while the rest

of the VNF operations can run on the CPU. An FPGA is a re-configurable

integrated circuit that consists of an array of logic blocks that can be mod-

ified to implement a desired function. In contrast to the sequential exe-

cution of operations in a CPU, multiple operations can be parallelized on

an FPGA. Massive parallelism combined with distributed on-chip memory

renders FPGAs well-suited for packet processing as compared to CPUs.

Therefore, hardware acceleration, e.g., using an FPGA, has the potential

to improve packet-processing performance and at the same time to reduce

the total energy spending due to better efficiency of hardware accelerators

as compared to software NFs [26].

Keeping the benefits of hardware acceleration in mind, the NFVi layer of

the NFV architecture (Fig. 1.7) can include accelerator resources along

with compute, network and storage. Furthermore, hardware accelerator re-

sources can be virtualized and allocated to the VNFs similar to compute

resource [27]. In order to retain the flexibility of NFV, the use of recon-

figurable hardware accelerators (e.g., FPGAs, GPUs) in conjunction with

COTS hardware has been proposed [24], [25]. The idea is that compute-

intensive workload from a VNF can be offloaded to an attached accelerator

while the rest of the VNF functionality can run on the CPU. For example,

by offloading en/decryption (e.g., Advanced Encryption Standard (AES))

and hashing (e.g., Secure Hash Algorithm (SHA)) operations from an IPSec

VNF to an FPGA-based accelerator, the CPU usage can be halved [28].

In summary, the NFV performance and power consumption challenge

can be addressed by incorporating hardware accelerators in NFVi. Incorpo-

rating hardware accelerators in NFVi is not enough; the resource allocation

process in the NFVO should be made aware of hardware accelerators so

that efficient resource utilization is achieved. This challenge is highlighted

in Section 1.6 of this chapter.

1.3 Software Defined Networking

A similar but complementary transformation in the telecom domain is Soft-

ware Defined Networking (SDN). SDN proposes to decouple the net-

work’s control plane from the data plane that reside together in routers and

switches [16]. With such task separation, switches become simple forward-

ing nodes and the control plane is consolidated at a logically centralized

controller. A few examples of open-source SDN controller are ONOS, RYU,

etc [17], [18]. Fig. 1.8 shows a simplified SDN architecture. The con-

trol plane interacts with the decentralized data plane using some protocol.

OpenFlow is an example of such a protocol that enables a controller to install

Introduction 15

desired flow rules in the tables of OpenFlow switches [19]. The data plane

can consist of both OpenFlow (hardware) switches and software switches,

e.g., open-source projects such as Click, Open Virtual Switch (OvS), Cu-

mulus [20], [21], [22]. These software SDN switches are widely employed

to realize complex VNF chains in NFV environments. In the management

plane, desired network policies can be defined and then communicated to

the control plane (e.g., using REST API), which is responsible to enforce

them via configuring the data plane accordingly.

Management plane

SDN

controller

Control plane

Data plane

Figure 1.8: Overview of the SDN architecture [19].

To summarize, NFV can exploit network programmability resulting from

SDN to implement network services efficiently and enhance their perfor-

mance. For example using OpenFlow, the traffic flow between the adjacent

VNFs of a VNF-chain can be optimized [23].

1.4 Media-over-IP and Media Function Vir-
tualization

Since the transition of the broadcast industry from analog to digital in-

frastructure, Serial Digital Interface (SDI) has been a sole transportation

method for carrying media signals (audio, video and auxiliary) across the

studio network [29]. Every media source and sink is connected point-to-

point to the back of the SDI router with BNC connectors and the switching

16 Chapter 1

matrix in the router performs circuit switching between the input and out-

put ports. The cable connections from sources/sinks to the SDI router are

unidirectional.

The wide adoption of SDI in the broadcast industry can be attributed to

its outstanding performance. In particular, the consistent latency offered

by the switching matrix regardless of the number of high-bandwidth media

streams being switched is one of the important features of SDI. Compati-

bility, robustness and reliability are some additional advantages offered by

SDI that are indispensable in the broadcast industry.

Despite the outstanding performance, SDI-based transport faces the follow-

ing challenges:

1. High-Cost: The CAPEX for SDI infrastructure is huge due to the

bespoke hardware, which has a small market size as compared to stan-

dard IT appliances.

2. Excessive cabling: The unidirectional communication and the lack

of multiplexing results in many cables running in parallel between

SDI routers. As a result, the installation, maintenance and upgrade

requires large manual labour.

3. Upgrade costs: The switching matrix in an SDI router is not agnos-

tic to the format of media essence being switched. Therefore, upgrad-

ing to higher quality media formats (e.g., from HD to UHD) requires

replacing the old SDI routers with the ones compatible with the new

format.

1.4.1 IP Media

Back in the 1990s, the Standard Definition (SD) video was carried using SDI

because IP networks could not support such multi-gigabits data rates. How-

ever, around early 2000s IP data rates surpassed that of SDI’s. Despite the

fact that the largest share (> 80%) of the total internet traffic is from me-

dia streaming applications [1], the transport of uncompressed media streams

over IP inside broadcast facility has garnered attention from broadcasters

only lately. The recent attention towards IP was mainly due to the poten-

tial of reducing costs in a long run by building studio infrastructure based

on standard IT equipment as opposed to proprietary SDI hardware [30].

The cost of IP network hardware is much less as it is less specialized than

proprietary broadcasting hardware, thus kicking off the economies of scale

effect. Media transport over IP would mean any media, irrespective of the

type (e.g., audio, video or ancillary) or quality (e.g., HD or UHD) can be

switched using COTS switches. This means that the Return on Investment

Introduction 17

(RoI) can be sustained over many years in future when upgrading to 4K,

8K or other emerging high-quality formats.

IP also allows multiplexing, i.e., multiple media streams can share the same

cable thus resulting in fewer cables implying easier installation, upgrade

and management. Owing to the format-agnostic nature of IP, upgrading to

high-resolution formats (e.g., from HD to UHD) does not necessitate up-

grading the IP infrastructure, as long as sufficient network bandwidth is

available. In an IP-based studio, a multi-layer switching architecture (e.g.,

leaf-spine network) is used to interconnect multiple endpoints (e.g., cam-

eras, multi-viewer screens, etc) and media processing elements (e.g., vision

mixers) located across the studio facility as shown in Fig. 1.9 [31]. Leaf-

spine architectures have been widely deployed in modern data centers due to

their simplicity, resilience and scalability. Further, there are at most three

hops between the endpoints thus reducing the end-to-end latency. An SDN

controller can be used to manage the switching core so that media streams

can be transported optimally between the endpoints [32].

The shift towards IP studios was clearly highlighted when the Society

OTT Internet

IP

switchi

ng

Core

camera

mic

file server

multiscreen

vision mixer

e.g., leaf-spine

topology

Figure 1.9: Architecture of an IP-based broadcast studio. The switching core can
be built as, e.g., leaf-spine topology [31].

of Motion Picture and Television Engineers (SMPTE) released SMPTE

ST2110, a suite of standards that describes how broadcast quality media

can be transported or distributed over IP [33], [34], [35]. The idea is to

18 Chapter 1

transport each essence (i.e., audio, video and ancillary data) as a separate

stream as shown in Fig. 1.10 (b). This is in contrast to older standards,

such as SMPTE ST 2022-6, that prescribe bundle-based media transport

(Fig. 1.10 (a)) [36]. The independent transport of each essence results in

much more efficient communication than with the bundle approach. For in-

stance, an audio processor would require extra processing to unpack audio

data from a bundled (audio, video and ANC) stream whereas the essence-

based approach would not result in such overhead.

For decades, the Real-time Protocol (RTP) has been a proven applica-

single IP address seperate IP addresses

(a) (b)

ST 2110-20 ST 2110-30 ST 2110-40

video audio anciliarry video audio anciliarry

Figure 1.10: Comparison of (a) bundle-based (SMPTE ST 2022-6) and (b)
essence-based media (SMPTE ST 2110) transport.

tion layer protocol for time-critical communications over IP networks, e.g.,

streaming media, teleconferencing, etc. RTP runs over UDP, which is faster

and simpler than TCP as it does not have overheads like error correction,

sequencing, flow and congestion, etc. The uncompressed media samples

(video or audio frames) are grouped into datagrams [37]. As there is no se-

quencing in UDP, a 32-bit sequence number, i.e., 16 bits from RTP header

and 16 bits from RTP payload header, is used. Further, the timestamp

field in the RTP header contains the capture time of the frame to which

the packet belongs. All RTP packets belonging to a frame contain the same

timestamp value, which is derived from the capture device’s clock synchro-

nized with the Precise Time Protocol (PTP).

Using an example, we next explain the process of packetization of an (un-

compressed) video frame. Assume a video frame with 4:2:2 subsampling,

Introduction 19

i.e., the two chroma components (Cb and Cr) are sampled at half the hor-

izontal sample rate of the luma component (Y’). This implies two horizon-

tally adjacent pixels form a pixel group (pgroup) of five octets if each com-

ponent is encoded using 10 bits. Therefore, a 4K video frame (3840x2160)

has 4147200 pgroups resulting in a frame size of 20.736 MB. Assuming a

UDP datagram of size 1460B, it would require about 14k such datagrams

to transport one video frame. At 30frames/second, the corresponding video

stream would require 4.976Gbps of bandwidth.

Fig. 1.11 shows the encapsulation of video pixel groups (pgroups) result-

ing from different network layers. To summarize, multiple pgroups are ap-

pended with an RTP payload header (PH) which is inserted in an RTP

packet which is placed into a UDP packet which is attached with an IP

header which is finally wrapped inside an Ethernet frame. The resulting

Ethernet frame is then sent to the destination.

The network transports the packets to the destination where the pixels are

extracted from each received packet and the full media frame is re-assembled

using RTP sequence numbers.

UDP RTP PH pg pg pg pg CSIPMAC …

RTP payload header

Pixel groups from a frame

Figure 1.11: Encapsulation of video pixel groups as a result of different protocol
layers.

1.4.2 Media Function Virtualization

Broadcasters need to perform various operations on uncompressed media

streams to produce the desired content. Media processing is traditionally

implemented via specialized hardware appliances. Analogous to an NF in

NFV, a Media Function (MF) takes as input one or more (SMPTE 2110)

media streams and performs some frame-level operations on it to produce

the output stream. Fig. 1.12 shows an example of a vision mixer VMF that

takes as input two video streams and the output stream switches between

the two inputs. In addition, a wipe transition effect (from left to right) is

added when output stream o is switched from i0 to i1. Producing broadcast-

quality content requires many more types of MFs such as color correction,

Picture-in-Picture (PIP), split-screen, etc. Complex media services can be

realized by chaining MFs with each other in specific configurations. Due to

20 Chapter 1

the stringent performance requirements in broadcast production, hardware-

based MFs have been relied upon.

The possibility of transporting media using IP paves the way for a more

Vision

mixer

wipe transition

i
0

i
1

o

Figure 1.12: Illustration of a vision mixer functionality; the video stream on
output port o is switched from i0 to i1 with a wipe transition.

scalable and future-proof architecture where media processing can be soft-

warized. Along these lines, the broadcast industry is in a phase of replac-

ing specialized media processing hardware with infrastructure consisting of

COTS hardware running media processing software for potential advantages

such as cost-savings, flexibility and agility. The software implementation of

an MF is referred to as the Virtual Media Function (VMF). Often,

virtual hardware instances are created from physical hardware using virtu-

alization technologies such as VMs or Docker containers.

Recently, there have been several attempts to produce broadcast-quality

content using VMFs. The BBC partnering with Isotama developed a video

mixing VMF that can be controlled through a browser application [38].

Moreover, Grassvalley’s has released an Agile Media Processing Platform

(AMPP) that leverages elastic compute of the COTS infrastructure to run

a variety of media processing workflows on one platform [39].

We propose Media Function Virtualization (MFV) as an architecture

where media services are implemented using VMFs hosted on COTS hard-

ware, similar to the NFV architecture where network services are realized

via VNF [40]. Fig. 1.13 illustrates the simplified view of the MFV archi-

tecture. The lowest layer in the architecture is the MFV Infrastructure

(MFVi) layer that contains all resources, i.e., both physical and virtual,

required to run VMFs along with the virtualization layer that is responsi-

ble for providing the required isolation between running VMFs. Depending

on the type of virtualization technology used, the virtualization layer can

Introduction 21

be a Hypervisor (type 1 or 2) if Virtual Machines are to be deployed or

it can be a Docker engine if containers are to be used. Above the MFVi

layer, lies the VMF layer that consists of VMFs, in the form of VMs or con-

tainers, where actual media processing occurs. The VMFs can be chained

together to realize a complex media service (top layer). A media service

can be realized by chaining multiple VMFs in a particular configuration.

This VMF configuration is represented using a directed graph referred to

as VMF Forwarding Graph (VMF-FG). The role of the CO layer in MFV

is multi-fold. First, it manages resources (physical and virtual) through the

use of some infrastructure management tools such as Openstack. Second, it

is responsible for managing the state of one or more VMFs by performing

tasks like update, query, scaling, healing, and termination of the VMFs.

The operation of various VMFs needs to be altered at times according to

the requirements of the director. For example, the director may need to

switch through a number of camera feeds throughout an event. This can

be done using a switcher VMF that takes as an input all camera feeds and

switches to a particular stream according to the control signal sent by the

director using a controller to the switcher VMF. The CO layer is responsible

for the distribution of control signals to the deployed VMFs.

The idea behind MFV can be extended further by executing (part) of

Media services

Layer

VMF

Layer

Infrastructure

Layer

Virtualization

Layer

Control &

Optimization

MFVi

Figure 1.13: Illustration of various layers and components in the MFV
architecture [40].

22 Chapter 1

production workflows in the cloud as opposed to running them in the local

facility. The “pay-as-go” model of the cloud can be attractive for small to

medium broadcasters that might want to avoid high CAPEX in deploying

broadcasting hardware; the cloud could also help to quickly scale resources

for media productions based on the demand. However, there is some skep-

ticism around cloud-based broadcast production due to performance and

security considerations; therefore, currently, cloud resources have been used

for non-live production workflows [41].

1.5 Deterministic Networking

Normally, routers and Ethernet switches in packet-switched networks op-

erate on a best-effort basis. Best-effort service entails that a packet can

get delayed excessively or in the worst-case gets dropped somewhere in the

network. In other words, there is no guarantee that the packet will reach its

destination within a bounded time or will even reach at all. The motivation

behind this was to keep the networking infrastructure fast and simple thus

making it possible for the network to route millions of flows. Although a

large percentage of traffic in the networks is forwarded with the Best-effort

service model, it is not adequate for various applications that require some

assurances from the network, e.g., in terms of throughput, latency, jitter,

etc. For instance, it might be okay for a google query result to be delayed

by quarter of a second, though a jitter as low as 10ms can severely impact

the performance of a remotely-controlled robot [42], [5]. The applications

that require preferential treatment over the rest use differentiated Quality

of Service (QoS); QoS parameters include minimum throughput, maximum

tolerable delay or jitter, etc.

As networks are expected to support applications with diverse requirements,

some applications require QoS guarantees from the network. Key Perfor-

mance Parameters (KPIs) of certain applications such as packet loss, delay

and jitter can be managed by prioritizing their network flows over the rest. A

customer can enter into a contractual agreement called Service-level Agree-

ment (SLA) with the network operator that guarantees a certain service

assurance (e.g., throughput or latency) at an additional expense.

The connections in a circuit-switched network are accompanied by the reser-

vation of resources so there is QoS baked into these networks. As the Inter-

net and most of the LANs are based on packet switching, we focus on the

relevant QoS approaches.

Introduction 23

1.5.1 QoS in Packet-switched Networks

While the behavior of packet-switched networks is inherently unpredictable,

a number of efforts have been made to support QoS. The two main tradi-

tional QoS models followed in the modern IP networks are as follows [6]:

1. IntServ: The Integrated Services (IntServ) model is based on a

reservation-based approach where network resources are explicitly re-

served for certain network flows. In order to request and reserve re-

sources in the network, applications use an end-to-end signaling mech-

anism called Resource Reservation Protocol (RSVP). Routers must

implement packet classifying and scheduling mechanisms, e.g., Class-

Based Queuing (CBQ) andWeighted Fair Queuing (WFQ), to support

QoS in IP networks.

2. DiffServ: The Differentiated Services (DiffServ) model is based on

a reservation-less approach where the network traffic is differentiated

into multiple classes which then get prioritized treatment in routers.

IntServ gives per-flow guarantees whereas DiffServ operates at the

class level. At the network boundary, the six-bit Differentiated Ser-

vices Code Point (DSCP) field is marked with a value that determines

how the packet will be treated as it traverses through the network [43].

There is no RSVP-like signaling mechanism thus no per-flow state is

maintained in routers. DiffServ requires routers to implement per-hop

behaviors (PHBs) that define how a packet belonging to a particular

class needs to be treated. It is difficult to promise end-to-end guaran-

tees with DiffServ as each node may implement different scheduling

and queuing mechanisms.

IntServ and DiffServ do support some QoS but they are suitable for ap-

plications associated with KPIs such as average delay or packet loss. The

IntServ model due to its per-flow management is not scalable for large net-

works whereas promising end-to-end guarantees is difficult with the DiffServ

service model [42]. For real-time applications (e.g., a remotely-controlled

robot) to work correctly, it is essential that the network can provide a deter-

ministic behavior in terms of strict KPIs, e.g., maximum latency and jitter.

The end-to-end latency on a network path consists of three components (i)

the propagation delay, (ii) transmission delay and (iii) queuing delay. The

first two components are fixed once the path is determined whereas the

queuing delay is variable. Therefore, in order to guarantee the end-to-end

latency, it is important to bound queuing delay in each node. This can

be achieved by employing various traffic shaping mechanisms, as discussed

next.

24 Chapter 1

The efforts to bring time-sensitivity in Ethernet can be traced to the work

done in the context of Audio Video Bridging (AVB) standards developed

by the IEEE [44]. The set of AVB standards describes how audio or video

streams can be transported over Ethernet along with QoS in terms of

bounded latency and jitter. Due to the increased scope of the work, the

Time Sensitive Networking (TSN) Task Group (TG) was formed in 2012 by

renaming the AVB task group. The objective of the TSN TG is to enable

real-time communication (i.e., bounded latency and availability guarantees)

in Ethernet, which is a prerequisite for real-time applications such as indus-

trial automation and broadcast production. There has been a growing in-

terest in bringing determinism over the (Layer 3) routed segments. To this

end, the IETF created Deterministic Networking (DetNet) TG that aims to

extend determinism to the network layer, as well.

Next, we give an overview of the progress made within TSN and DetNet

TG that is relevant to our work.

1.5.1.1 Time Sensitive Networking

The TSN TG has proposed a set of standards that specify techniques and

mechanisms required to support real-time communication in Ethernet as

listed in Tab. 1.1. These standards are an extension to an old IEEE stan-

dard referred to as IEEE802.1Q: Bridges and Bridged Networks. The set

of standards defined can be grouped in three categories each representing

an essential component required in a TSN network. An overview of the

standards in the three categories is as follows:

• Time synchronization: To correctly implement traffic shaping and

scheduling mechanisms correctly, a common understanding of time

among all the participating nodes is quite essential, i.e., the nodes

must be time-synchronized. To this end, the Precision Time Protocol

(PTP) or IEEE 1588 is used [45]. Through a continuous exchange of

messages across the network clocks can be synchronized to a reference

clock. Through time synchronization all nodes can transmit packets

at their scheduled times. To adapt PTP specifically for AVB and

TSN, IEEE 802.1AS has been proposed [46].

• Traffic shaping and scheduling: To ensure zero packet loss and

guaranteed latency all participating nodes must smooth out their out-

put traffic. Without traffic shaping, the packet can form a burst that

can, in worst-case, grow in size as the flow traverses through the net-

work [47]. A subsequent node might have to drop the packets as the

buffers are overwhelmed by the burst.

Credit-based Shaper (CBS) or IEEE 802.1Qav is a traffic shaping

Introduction 25

mechanism based on credit-based fair queuing. The credits are zero

when there is no frame in the queue [48]. The credits increase @ IdleS-

lope rate when a frame is queued (other queue is sending) and decrease

@ SendSlope rate when a frame is being sent. A queue can only send

if the link is not busy and it has non-negative credits. For each pri-

ority, the latency per switch can be bounded. However, the per-node

queuing delay with CBS could be as high as 250µs that might not be

suitable for some real-time applications.

Two additional key traffic shaping mechanisms: Time-aware Shaping

(TAS) and Cyclic Queuing and Forwarding (CQF), will be explained

in detail later.

• Resource reservation, Path Control and Redundancy: IEEE

802.1Qca: Path Control and Reservation is a standard that specifies

procedures to configure multiple paths based on the Intermediate Sta-

tion (IS-IS) protocol in Ethernet networks [49]. It extends the IS-IS

control beyond the Shortest Path Trees (SPTs) by adding options for

non-shortest paths or explicit path configuration. A Path Compu-

tation Element (PCE) residing in a dedicated server can be used to

compute explicit paths.

IEEE 802.1Qcc describes how to manage and control the network cen-

trally [50]. Using the User-Network Interface (UNI), the endstations

can communicate with the Centralized Network Controller (CNC),

e.g., a flow reservation request.

Packet losses due to congestion in Ethernet switches can be prevented

by applying the above traffic shaping mechanisms. However, to pro-

tect against packet losses due to equipment failures in the network,

Frame Replication and Elimination for Reliability (FRER), as docu-

mented in IEEE 802.1CB, is proposed [51]. The TT flow packets are

sequenced and replicated into multiple (e.g., 1+1) flows in the net-

work. Near the destination node, packets from the replicated flows

are identified and duplicate packets are eliminated.

Another widely employed traffic shaping mechanism in TSN is IEEE

802.1Qbv or TAS [52]. Time-aware shaping is based on the idea of dividing

time into cycles of fixed length with each cycle further divided into slots that

can be allocated exclusively to different flows. This Time-division Multiple

Access (TDMA) -like approach ensures that the real-time traffic can co-exist

with the non-critical best-effort traffic. Next, we explain the working of a

TAS-enabled switch.

Fig. 1.14 illustrates the internals of a typical TSN switch. After the selec-

26 Chapter 1

Table 1.1: Overview of various TSN standards.

Standard Description
IEEE 802.1AS-
Rev

Timing and synchronization for time-
sensitive Applications [46].

IEEE 802.1Qav Prioritization of time-sensitive streams
over best-effort using Credit Based Shaper
(CBS) [48].

IEEE 802.1Qbv Scheduling of time-sensitive traffic using
time-aware shaping [52].

IEEE 802.1Qca Path control and reservation [49].
IEEE 802.1Qci Per-stream Filtering and Policing [53].
IEEE Std
802.1CB-2017

Frame Replication and Elimination for Re-
liability [51].

tion of the egress port through the switching fabric, the packet is assigned

to one of the multiple First-in-first-out (FIFO) queues based on the priority

code point (PCP) value of the Ethernet header. Each queue is associated

with a gate whose state (open/close) determines if the corresponding queue

can transmit or not. The enqueued packets are transmitted on the egress

port in the FIFO fashion. In case multiple queue gates are open at a time,

the queue with the highest priority gets to transmit. A Gate Control En-

try (GCE) defines which queue will be opened during a specific interval of

time. For instance, the third GCE corresponds to a time interval of length

T3 seconds for which q7 is opened whereas all other gates are closed q0. The

sequence of GCEs is called Gate Control List (GCL) that repeats after a

fixed period referred to as the cycle time.

A TSN mechanism called frame preemption (IEEE 802.3br and IEEE

802.1Qbu) allows suspending the transmission of preemptable frames (e.g.,

BE frame) for a so-called express frame (e.g., TT frame) [54]. Frame pre-

emption results in a decrease of jitter for express traffic.

1.5.1.2 DetNet

Similar to the IEEE TSN TG, the IETF DetNet WG aims to bring QoS like

time synchronization, zero congestion loss, bounded delay and reliability in

Layer 3 [55]. DetNet, in contrast to TSN, is expected to be deployed in a

large scale network with the following characteristics:

• Long distance between network nodes leading to longer propagation

delay

Introduction 27

T
0

T
1

T
2

01111111

00000000
10000000

Gate-control list

G
G

G

..
.

T
x

s
e

le
c
ti
o

n

TAS

TAS
ingress

ingress

egress

egress

Priority

filter

q
7

q
1

q
0

Figure 1.14: Illustration showing a simplified view of a TAS-enabled switch.
During the interval corresponding to the third GCE, only q7 is allowed to

dequeue.

• Large number of devices in different network domains makes the task

of precise synchronization among all nodes challenging.

• Large number (100s to 1000s) of flows on the network makes main-

taining per-flow state in network nodes un-scalable.

Next, we investigate the queuing mechanism relevant to DetNet.

CQF or peristaltic shaper is a queuing mechanism described in IEEE 802.1Qch

[56]. The time in CQF-enabled nodes is divided into cycles of lengths equal

to Tcyc. Each egress port of a node contains two queues (q0 and q1). During

cycle i, queue q0 is allowed to dequeue its packets which are transmitted

to the downstream node, whereas q1 during this cycle enqueues packets re-

ceived from its upstream nodes as shown in Fig. 1.15. In the next cycle

(i+1), the roles are reversed, i.e., q0 enqueues and q1 dequeues. The cyclic

enqueuing and dequeuing of packets is also referred to as ping-pong buffer-

ing. Because of ping-pong buffering of queues, the packets transmitted by

the node in a cycle (i) were received in the previous cycle (i−1). This entails

that the maximum delay experienced per hop is 2Tcyc, i.e., corresponding

to the packet enqueued at the beginning of cycle i and dequeued at the end

of cycle i+ 1.

28 Chapter 1

The simple queuing mechanism in CQF, i.e., receiving packets in the same

q
0

q
1

q
1

q
0

… i-1 i i+1 …

q
1

T
cyc

Figure 1.15: Illustration showing CQF operation in a node.

cycle in which they were transmitted, has a serious disadvantage. An up-

stream node is not allowed to be transmitted during the whole cycle; a

guard band time at the end of the cycle has to be kept to ensure the above

condition. Thus CQF is not suitable for long-distance for a given Tcyc value.

To ensure this condition, a large amount of bandwidth is wasted as a guard

time is kept for each cycle making CQF inefficient for DetNet.

The inefficiency of CQF can be mitigated by having at least three (one extra

as compared to CQF) buffers per egress port and specifying the cycle time

in which the packet should be transmitted. This queuing model is called

Cycle Specified Queueing and Forwarding (CSQF). The common approach

of specifying cycle time in a packet is discussed next. The CSQF operation

with three queues is shown in Fig. 1.16 [57]. It can be observed that the

packet sent by the upstream node in cycle i is received by the node during

cycle j which then re-transmits it to the downstream node in cycle j + 1.

At any time, one queue is used for transmission and the other two queues

are used for reception. The time spent for transmission corresponds to one

CSQF cycle time. After every Tcyc seconds, the next queue is considered

for transmission resulting in a round-robin queue selection.

A centralized controller computes the transmission cycle for each node on

the path and therefore the queue to which the packet should be enqueued.

At the ingress node, packets are appended with a stack of queue identifiers.

The controller with the global view of the network and flow requirements

can ensure bandwidth allocation in each cycle does not exceed the available

bandwidth. By using the stack of identifiers, the operation of network nodes

is quite simple, i.e., to enqueue the received packet based on the queue iden-

tifier. A minimum of two bits (corresponding to three or more queues) per

Introduction 29

q
0

round-robin

queue selection

q
1

q
2

q
2

q
0

… i-1 i i+1 …

q
1

T
cyc

Figure 1.16: Illustration for queuing operation in a CSQF-enabled node.

egress port are required to identify a queue. The identifiers can be contained

in, e.g., the DSCP field of IPv4 header, SID of SRv6, traffic class of IPv6

header, etc [58].

Consider three CSQF-nodes adjacent to each other as shown in Fig. 1.17.

The packet received in cycle j is sent in cycle j + 1. It can be deduced

that the end-to-end queuing delay on a path of length N hops is 2NTcyc,

whereas the jitter or delay variation is equal to 2Tcyc [57]. It is worth point-

ing out that the jitter is still bounded although the total queuing delay is

dependent on the number of hops. The key benefit with CSQF is that the

constraint that transmission (from the upstream node) and reception (at

the downstream node) has to occur in the same cycle is no longer applica-

ble. Thus, the propagation delay guard time is not needed resulting in an

efficient bandwidth utilization.

1.6 Outline and Research contributions

In this section, we provide an outline of this doctoral dissertation and high-

light the key research contributions made. The dissertation focuses on opti-

mization algorithms for (i) the deployment of virtualized network and media

services and (ii) packet scheduling in the context of real-time applications.

Thus, the contributions made in this dissertation can be grouped under

these two main themes. The general outline of the dissertation is given in

Fig. 1.18.

Next, we give an overview of various research problems considered under

each theme.

30 Chapter 1

n
1

n
2

n
3

i+1i

j j+1j-1

T
cyc

queueing delay ≤ 2T
cyc

propagation delay

Figure 1.17: Packet forwarding between the three adjacent CSQF-enabled nodes.
The packet sent by n1 in cycle i is received by n2 in cycle j which is re-sent to

n3 in cycle j + 1.

1.6.1 Service Deployment

The first research theme in the dissertation is service deployment in the con-

text of virtualized network and media services. Hardware accelerators are

increasingly becoming important in NFV environments because of their po-

tential to address the NFV performance and power consumption challenge.

Efficient utilization of all resources including hardware accelerators is im-

portant in order to achieve overall cost reductions as envisaged by the NFV

proposal [10]. To this end, we investigated NFV resource allocation with the

awareness of hardware accelerators in Chapter 2. This problem is referred

to as Accelerator-aware VNF Placement and Chaining (VNF-AAPC), i.e.,

how to allocate NFVi resources including hardware accelerators to VNF-

chains in a cost-efficient manner. We propose an Integer Linear Program

(ILP) model that jointly optimizes VNF placement, chaining and accelera-

tor allocation process. A heuristic-based method is also proposed to solve

the problem, though avoiding the scalability issues in the ILP approach.

Similar to telecom operators, broadcasters desire to bring down their expen-

ditures in the times of falling APRU. To this end, architectures are foreseen

where media services can be realized using Virtual Media Functions (VMFs)

analogous to the NFV architecture where a network services is realized via

VNFs. In addition to the benefits described in Chapter 2 that result from

the NFV transformation, additional opportunities resulting from MFV can

exploited to further improve resource utilization. In Chapter 3, a general-

ized algorithm is proposed that decomposes a given VMF Forwarding Graph

Introduction 31

(representation of virtual media service). In addition, two VMF Placement

and Chaining (VMF-PC) algorithms: Next-Fit and k-cut are proposed.

The solution to the VNF-AAPC problem presented in Chap 2 results in a

static allocation of accelerators to VNFs. The static allocation of acceler-

ators is not efficient in a scenario when the traffic flowing through VNFs,

thus their CPU requirements, varies with time. To tackle this problem,

we present a method to dynamically allocate hardware accelerators in an

NFV environment. A PoC for the scheme is presented and experimentally

evaluated. As this PoC supplements the contributions made in Chap 2, it

is contained in Appendix A.

A failure in the NFVi is followed by the recovery of the impacted VNF-

chains. Appendix B deals with the problem of accelerator-aware VNF-chain

recovery. In case of failures in the NFVi, the recovery of VNF-chains must

take into account the (re)-allocation hardware accelerator. The accelerator-

aware VNF-chain recovery problem extends the VNF-AAPC problem by

restoring the impacted VNF-chains with prioritization. The accelerator-

aware VNF-chain recovery As these contributions augment the contributions

of Chapter 2, they are contained in Appendix B. The problem is formulated

as an ILP and a heuristic is proposed that matches the performance of

the ILP’s performance in regard to the restoration of high and medium pri-

ority VNF-chains by tolerating a small penalty for low-priority VNF-chains.

1.6.2 Scheduling algorithms

The second research theme deals with the problem of end-to-end packet

scheduling for time-sensitive applications.

The VMF-PC algorithms proposed in Chapter 3 do not provide any guar-

antees on the end-to-end latency of a deployed media service. In Chapter

4, we revisit the VMF-PC problem of MFV but guaranteeing the maximum

latency and jitter between the adjacent VMFs of the deployed service. This

can be ensured by employing a queuing mechanism like CSQF for packet

scheduling between adjacent VMFs of the VMF-FG. The VMF-FG schedul-

ing problem is addressed to ensure end-to-end timing guarantees.

Chapter 5 combines the packet scheduling mechanism described in Chap-

ter 4 with dedicated protection. The traffic shaping mechanism like CSQF

ensures zero packet loss due to congestion in the network but node or link

failure can still cause service disruption. This can be avoided by employing

a dedicated protection scheme like 1+1. In other words, the problem is to

find (i) two paths (1+1) between the endpoints of a DetNet flow and (ii)

schedule packet transmissions on these paths. The packet scheduling on two

paths should take into account the end-to-end latency on these paths such

32 Chapter 1

that reliable recovery can take place at the destination. The problem is first

formulated as an ILP and then two heuristics: greedy and Tabu-search, are

proposed.

Wireless connectivity is preferable over wired connections in many envi-

ronments (e.g., to control multiple robotic arms in a factory). To support

real-time applications in a mixed wired-wireless network, packet scheduling

is required not only on wired but also on wireless segments of the network.

Chapter 6 focuses on the problem of end-to-end packet scheduling in such

a wired-wireless mixed network. For a given set of time-sensitive flows and

the mixed wired-wireless TSN-enabled network, the problem is to select

routes for the flows and calculate packet schedules on these routes. An ILP

formulation of the problem is proposed and a greedy-based heuristic is pro-

posed to solve the problem in a reasonable amount of time. The influence

of various request ordering criteria on the performance of heuristic is re-

ported. In addition, the impact of wireless requests on the performance of

the scheduling is investigated.

Finally, Chapter 7 concludes the dissertation with the key outcomes and

discusses the possible future work.

1.6.3 Chapter Ordering

In Chapter 2, we optimize resource allocation in the context of NFV de-

ployments. Chapter 3 continues the goal of efficient resource allocation but

for MFV deployments. As media services require real-time network guar-

antees, Chapter 4 adapts the VMF-PC procedure of Chapter 3 to include

packet scheduling in MFV deployments. Chapter 5 builds on Chapter 4

by adding dedicated protection (1+1) to CSQF-based packet scheduling

for DetNet flows. Finally, Chapter 6 extends the goal of time sensitivity

beyond wired networks by tackling the end-to-end scheduling problem in

mixed wired-wireless networks.

1.7 Publications

The research results obtained during this PhD research have been pub-

lished in various scientific journals and presented at a series of international

conferences. The following list provides an overview of the publications in

chronological order.

Introduction 33

hardware-accelerator aware deployment

(Ch. 2)

service deployment in MFV

(Ch. 3)

dynamic hardware acceleration

(App. A)

accelerator-aware recovery

(App. B)

scheduling for 1+1 protected DetNet

(Ch. 5)

mixed network scheduling

(Ch. 6)

scheduling in MFV

(Ch. 4)

Service deployment Packet scheduling

Figure 1.18: An overview of the key contributions made in this dissertation. For
each contribution, the related chapter or appendix is indicated.

34 Chapter 1

1.7.1 Publications in international journals (listed in
the Science Citation Index 1)

1. Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, and Mario

Pickavet, “VNF-AAPC: Accelerator-aware VNF Placement and Chain-

ing,” Published in Computer Networks, vol. 177, 2020.

2. Gourav Prateek Sharma, Didier Colle, Wouter Tavernier, and Mario

Pickavet, “On Decomposition and Deployment of Virtualized Media

Services,” Published in the IEEE Transactions on Broadcasting, vol.

67, no. 3, pp. 761–775, 2021.

3. Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, and Mario

Pickavet, “Routing and Scheduling for 1+1 Protected DetNet flows,”

Accepted in Computer Networks, 2022.

4. Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, Mario Pick-

avet, Jetmir Haxhibeqiri, Jeroen Hoebeke and Ingrid Moerman, “End-

to-end Scheduling for Wired-wireless Mixed Networks,” Submitted to

Computer Communication, 2022.

1.7.2 Publications in other international journals

1. Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, and Mario

Pickavet, “Scheduling for Media Function Virtualization,” Published

in Future Internet, vol. 13, no. 7, 2021.

1.7.3 Publications in international conferences (listed
in the Science Citation Index 2)

1. Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, and Mario

Pickavet, “Dynamic accelerator provisioning for SSH tunnels in NFV

environments,” Published in the Proceedings of the IEEE Confer-

ence On Network Softwarization (Netsoft), Paris, France, 2019, pp.

242–244.

1The publications listed are recognized as ‘A1 publications’, according to the following
definition used by Ghent University: A1 publications are articles listed in the Science
Citation Index Expanded, the Social Science Citation Index or the Arts and Humanities
Citation Index of the ISI Web of Science, restricted to contributions listed as article,
review, letter, note or proceedings paper.

2The publications listed are recognized as ‘P1 publications’, according to the follow-
ing definition used by Ghent University: P1 publications are proceedings listed in the
Conference Proceedings Citation Index - Science or Conference Proceedings Citation In-
dex - Social Science and Humanities of the ISI Web of Science, restricted to contributions
listed as article, review, letter, note or proceedings paper, except for publications that
are classified as A1.

Introduction 35

2. Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, and Mario

Pickavet, “Dynamic hardware-acceleration of VNFs in NFV environ-

ments,” Published in the Proceedings of the International Conference

on Software Defined Systems (SDS), Rome, Italy, 2019, pp. 254–259.

3. Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, and Mario

Pickavet, “hardware accelerator aware VNF-chain recovery,” Pub-

lished in the Proceedings of the International Conference on the De-

sign of Reliable computer networks (DRCN), Milan, Italy (virtual),

2020.

1.7.4 Publications in other international conferences

1. Gourav Prateek Sharma, Didier Colle, Wouter Tavernier, and Mario

Pickavet, “VNF-AAP: Accelerator-aware Virtual Network Function

Placement,” Published in the Proceedings of the IEEE Conference

on Network Function Virtualization and Software Defined Networks

(NFV-SDN), Dallas, USA, 2019.

2. Gourav Prateek Sharma, Didier Colle, Wouter Tavernier, and Mario

Pickavet, “Improving resource utilization with Virtual Media Func-

tion decomposition,” Published in the Proceedings of the International

Conference on Multimedia Computing, Networking and Applications

(MCNA), Valencia, Spain (virtual), 2020, pp. 31–37.

36 Chapter 1

References

[1] Cisco Annual Internet Report (2018–2023). Whitepaper,

2020. Available from: https://www.cisco.com/c/en/us/

solutions/collateral/executive-perspectives/annual-internet-report/

white-paper-c11-741490.pdf.

[2] Coronavirus: Belgian internet traffic nearly dou-

bles. https://www.brusselstimes.com/brussels-2/100816/

coronavirus-belgian-internet-traffic-nearly-doubles. (Accessed on

02/16/2022).

[3] Wireless Services in Europe: A Mixed Bag

for Operators. https://blog.telegeography.com/

wireless-services-subscribers-in-europe-2g-3g-4g-5g. (Accessed on

02/16/2022).

[4] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and

V. Sekar. Making middleboxes someone else’s problem: Network pro-

cessing as a cloud service. ACM SIGCOMMComputer Communication

Review, 42(4):13–24, 2012.

[5] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,

M. Reisslein, and H. ElBakoury. Ultra-low latency (ULL) networks:

The IEEE TSN and IETF DetNet standards and related 5G ULL

research. IEEE Communications Surveys & Tutorials, 21(1):88–145,

2018.

[6] J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down

Approach Edition. Addision Wesley, 2007.

[7] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments

in system design. ACM Transactions on Computer Systems (TOCS),

2(4):277–288, 1984.

[8] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,

and R. Boutaba. Network function virtualization: State-of-the-art

and research challenges. IEEE Communications surveys & tutorials,

18(1):236–262, 2015.

[9] D. Gedia and L. Perigo. Performance evaluation of SDN-VNF in vir-

tual machine and container. In 2018 IEEE Conference on Network

Function Virtualization and Software Defined Networks (NFV-SDN),

pages 1–7. IEEE, 2018.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.brusselstimes.com/brussels-2/100816/coronavirus-belgian-internet-traffic-nearly-doubles
https://www.brusselstimes.com/brussels-2/100816/coronavirus-belgian-internet-traffic-nearly-doubles
https://blog.telegeography.com/wireless-services-subscribers-in-europe-2g-3g-4g-5g
https://blog.telegeography.com/wireless-services-subscribers-in-europe-2g-3g-4g-5g

Introduction 37

[10] ETSI GS NFV-SEC 012 Network Functions Virtualisation (NFV) Re-

lease 3; Security; System architecture specification for execution of

sensitive NFV components. Group specification, ETSI ISG, January

2017. Available from: https://www.etsi.org/deliver/etsi gs/nfv-man/

001 099/001/01.01.01 60/gs nfv-man001v010101p.pdf.

[11] J. G. Herrera and J. F. Botero. Resource allocation in NFV: A com-

prehensive survey. IEEE Transactions on Network and Service Man-

agement, 13(3):518–532, 2016.

[12] ETSI. Open Source MANO. Available from: https://www.onap.org/.

[13] The Linux Foundation. Open Network Automation Platform (ONAP).

Available from: https://www.onap.org/.

[14] M. T. Raza, D. Kim, K.-H. Kim, S. Lu, and M. Gerla. Rethinking

LTE network functions virtualization. In 2017 IEEE 25th International

Conference on Network Protocols (ICNP), pages 1–10. IEEE, 2017.

[15] L. Peterson and O. Sunay. 5G mobile networks: A systems approach.

Synthesis Lectures on Network Systems, 1(1):1–73, 2020.

[16] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-

molky, and S. Uhlig. Software-defined networking: A comprehensive

survey. Proceedings of the IEEE, 103(1):14–76, 2014.

[17] Open Networking Foundation. Open Network Operating System. Avail-

able from: https://opennetworking.org/onos/.

[18] RYU the Network Operating System(NOS). Available from: https://

ryu-sdn.org/resources.html.

[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation

in campus networks. ACM SIGCOMM computer communication re-

view, 38(2):69–74, 2008.

[20] E. Kohler. The Click Modular Router. Available from: https://github.

com/kohler/click.

[21] T. L. Foundation. Open Virtual Switch. Available from: https://www.

openvswitch.org/.

[22] NVIDIA. NVIDIA Cumulus Linux. Available from: https://www.

nvidia.com/en-us/networking/ethernet-switching/cumulus-linux/.

https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.onap.org/
https://www.onap.org/
https://opennetworking.org/onos/
https://ryu-sdn.org/resources.html
https://ryu-sdn.org/resources.html
https://github.com/kohler/click
https://github.com/kohler/click
https://www.openvswitch.org/
https://www.openvswitch.org/
https://www.nvidia.com/en-us/networking/ethernet-switching/cumulus-linux/
https://www.nvidia.com/en-us/networking/ethernet-switching/cumulus-linux/

38 Chapter 1

[23] D. Bhamare, R. Jain, M. Samaka, and A. Erbad. A survey on service

function chaining. Journal of Network and Computer Applications,

75:138–155, 2016.

[24] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zin-

ner, R. Bifulco, M. Jarschel, and G. Bianchi. Survey of performance

acceleration techniques for network function virtualization. Proceedings

of the IEEE, 107(4):746–764, 2019.

[25] C. Kachris, G. Sirakoulis, and D. Soudris. Network function virtual-

ization based on FPGAs: A framework for all-programmable network

devices. arXiv preprint arXiv:1406.0309, 2014.

[26] Z. Bronstein, E. Roch, J. Xia, and A. Molkho. Uniform handling and

abstraction of NFV hardware accelerators. IEEE Network, 29(3):22–29,

2015.

[27] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and

X. Hu. OpenANFV: Accelerating network function virtualization with

a consolidated framework in openstack. ACM SIGCOMM Computer

Communication Review, 44(4):353–354, 2014.

[28] Z. Martinasek, J. Hajny, D. Smekal, L. Malina, D. Matousek,

M. Kekely, and N. Mentens. 200 Gbps hardware accelerated encryption

system for FPGA network cards. In Proceedings of the 2018 Workshop

on Attacks and Solutions in Hardware Security, pages 11–17, 2018.

[29] T. Kojima, J. J. Stone, J.-R. Chen, and P. N. Gardiner. A practi-

cal approach to IP live production. SMPTE Motion Imaging Journal,

124(2):29–40, 2015.

[30] A. Kovalick. Design elements for core ip media infrastructures. SMPTE

Motion Imaging Journal, 125(2):16–23, 2016.

[31] F. Poulin, P. Keroulas, S. Nyamweno, W. Vermost, P. Ferreira, and

I. Kostiukevych. How CBC/radio-Canada tested media-over-IP devices

to build its new facility. SMPTE Motion Imaging Journal, 129(4):35–

44, 2020.

[32] S. Sneddon, C. Swisher, and J. Mayzurk. Large Scale Deployment of

SMPTE 2110: The IP Live Production Facility. In SMPTE 2019, pages

1–31. SMPTE, 2019.

[33] ST 2110-20:2017 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: Uncompressed Active Video. ST 2110-20:2017, pages

1–22, 2017. doi:10.5594/SMPTE.ST2110-20.2017.

Introduction 39

[34] ST 2110-30:2017 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: PCM Digital Audio. ST 2110-30:2017, pages 1–9,

2017. doi:10.5594/SMPTE.ST2110-30.2017.

[35] ST 2110-40:2018 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: SMPTE ST 291-1 Ancillary Data. ST 2110-40:2018,

pages 1–8, 2018. doi:10.5594/SMPTE.ST2110-40.2018.

[36] ST 2022-8:2019 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: Timing of ST 2022-6 Streams in ST 2110-10 Sys-

tems. ST 2022-8:2019, pages 1–10, 2019. doi:10.5594/SMPTE.ST2022-

8.2019.

[37] L. Gharai and C. Perkins. RTP payload format for uncompressed video.

RFC, 4566, 2005.

[38] B. Research and Development. Compositing and Mixing Video in

the Browser, 2018. Available from: https://www.bbc.co.uk/rd/blog/

2017-07-compositing-mixing-video-browser.

[39] Grass Valley. Agile Media Processing Platform.

[40] G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet. VNF-AAPC:

Accelerator-aware VNF placement and chaining. Computer Networks,

177:107329, 2020.

[41] Y. Reznik, J. Cenzano, and B. Zhang. Transitioning broadcast to cloud.

Applied Sciences, 11(2):503, 2021.

[42] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,

A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan. Reducing web

latency: the virtue of gentle aggression. In Proceedings of the ACM

SIGCOMM 2013 conference on SIGCOMM, pages 159–170, 2013.

[43] DiffServ – The Scalable End-to-End QoS Model. Whitepaper, Cisco,

08 2005. Available from: https://www.cisco.com/en/US/technologies/

tk543/tk766/technologies white paper09186a00800a3e2f.html.

[44] IEEE Standard for Local and metropolitan area networks–Audio Video

Bridging (AVB) Systems. IEEE Std 802.1BA-2011, pages 1–45, 2011.

doi:10.1109/IEEESTD.2011.6032690.

[45] IEEE Standard for a Precision Clock Synchronization Protocol

for Networked Measurement and Control Systems. IEEE Std

1588-2019 (Revision ofIEEE Std 1588-2008), pages 1–499, 2020.

doi:10.1109/IEEESTD.2020.9120376.

https://www.bbc.co.uk/rd/blog/2017-07-compositing-mixing-video-browser
https://www.bbc.co.uk/rd/blog/2017-07-compositing-mixing-video-browser
https://www.cisco.com/en/US/technologies/tk543/tk766/technologies_white_paper09186a00800a3e2f.html
https://www.cisco.com/en/US/technologies/tk543/tk766/technologies_white_paper09186a00800a3e2f.html

40 Chapter 1

[46] IEEE Standard for Local and Metropolitan Area Networks - Tim-

ing and Synchronization for Time-Sensitive Applications in Bridged

Local Area Networks. IEEE Std 802.1AS-2011, pages 1–292, 2011.

doi:10.1109/IEEESTD.2011.5741898.

[47] S. Sharma, D. Colle, W. Tavernier, M. Pickavet, and P. Demeester.

Inter-burst segregation protocol guaranteeing loss-free packet-switched

networks. IEEE Communications Letters, 20(10):1959–1962, 2016.

[48] IEEE Standard for Local and Metropolitan Area Networks - Virtual

Bridged Local Area Networks Amendment 12: Forwarding and Queu-

ing Enhancements for Time-Sensitive Streams. IEEE Std 802.1Qav-

2009 (Amendment to IEEE Std 802.1Q-2005), pages C1–72, 2010.

doi:10.1109/IEEESTD.2009.5375704.

[49] IEEE Standard for Local and metropolitan area networks— Bridges and

Bridged Networks - Amendment 24: Path Control and Reservation.

IEEE Std 802.1Qca-2015 (Amendment to IEEE Std 802.1Q-2014 as

amended by IEEE Std 802.1Qcd-2015 and IEEE Std 802.1Q-2014/Cor

1-2015), pages 1–120, 2016. doi:10.1109/IEEESTD.2016.7434544.

[50] IEEE Standard for Local and Metropolitan Area Networks–Bridges

and Bridged Networks – Amendment 31: Stream Reservation

Protocol (SRP) Enhancements and Performance Improvements.

IEEE Std 802.1Qcc-2018 (Amendment to IEEE Std 802.1Q-2018

as amended by IEEE Std 802.1Qcp-2018), pages 1–208, 2018.

doi:10.1109/IEEESTD.2018.8514112.

[51] IEEE Standard for Local and metropolitan area networks–Frame Repli-

cation and Elimination for Reliability. IEEE Std 802.1CB-2017, pages

1–102, 2017. doi:10.1109/IEEESTD.2017.8091139.

[52] IEEE Standard for Local and metropolitan area networks – Bridges

and Bridged Networks - Amendment 25: Enhancements for Scheduled

Traffic. IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-

2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-

2015, and IEEE Std 802.1Q-2014/Cor 1-2015), pages 1–57, 2016.

doi:10.1109/IEEESTD.2016.8613095.

[53] IEEE Standard for Local and metropolitan area networks–Bridges and

Bridged Networks–Amendment 28: Per-Stream Filtering and Polic-

ing. IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014

as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015,

IEEE Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE

Introduction 41

Std 802.1Qbu-2016, and IEEE Std 802.1Qbz-2016), pages 1–65, 2017.

doi:10.1109/IEEESTD.2017.8064221.

[54] IEEE Standard for Local and metropolitan area networks – Bridges and

Bridged Networks – Amendment 26: Frame Preemption. IEEE Std

802.1Qbu-2016 (Amendment to IEEE Std 802.1Q-2014), pages 1–52,

2016. doi:10.1109/IEEESTD.2016.7553415.

[55] N. Finn, P. Thubert, B. Varga, and J. Farkas. Deterministic networking

architecture. RFC 8655, 2019.

[56] IEEE Standard for Local and metropolitan area networks–Bridges

and Bridged Networks–Amendment 29: Cyclic Queuing and Forward-

ing. IEEE 802.1Qch-2017 (Amendment to IEEE Std 802.1Q-2014 as

amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd(TM)-2015,

IEEE Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE

Std 802.1Qbu-2016, IEEE Std 802.1Qbz-2016, and IEEE Std 802.1Qci-

2017), pages 1–30, 2017. doi:10.1109/IEEESTD.2017.7961303.

[57] M. Chen, X. Geng, and Z. Li. Segment Routing (SR) Based Bounded

Latency. Internet Engineering Task Force, Internet-Draft draft-

chendetnet-sr-based-bounded-latency-00, 2018.

[58] E. L. Qiang, X. Geng, B. Liu, and E. T. Eckert. Large-Scale Deter-

ministic IP Network. Internet Engineering Task Force, Internet-Draft

draft-qiang-detnet-large-scale-detnet-04, 2019.

2
VNF-AAPC: Accelerator-aware VNF

Placement and Chaining

Hardware acceleration is currently being proposed as a solution to address

the two key challenges faced by telecom operators when adopting NFV: per-

formance degradation and high energy consumption. By offloading compute-

intensive tasks from VNFs to hardware accelerators, packet processing per-

formance is improved along with a reduction in CPU utilization. This chap-

ter proposes resource allocation mechanisms that take into account hardware

accelerators in NFV environments. These mechanisms optimize resource

utilization so that telecom operators can reduce their overall expenditure.

⋆ ⋆ ⋆

G.P. Sharma, W. Tavernier, D. Colle, and M. Pickavet

Published in Computer Networks, vol. 177, 2020.

Abstract In recent years, telecom operators have been migrating towards

network architectures based on Network Function Virtualization in order

to reduce their high Capital Expenditure (CAPEX) and Operational Ex-

penditure (OPEX). However, the virtualization of some network functions

is accompanied by a significant degradation of Virtual Network Function

(VNF) performance in terms of their throughput or energy consumption.

44 Chapter 2

To address these challenges, the use of hardware accelerators, e.g. FPGAs,

GPUs, to offload CPU-intensive operations from performance-critical VNFs

has been proposed.

Allocation of NFV infrastructure (NFVi) resources for VNF placement and

chaining (VNF-PC) has been a major area of research recently. A variety

of resources allocation models have been proposed to achieve various opera-

tor’s objectives i.e. minimizing CAPEX, OPEX, latency, etc. However, the

VNF-PC resource allocation problem for the case when NFVi incorporates

hardware accelerators remains unaddressed. Ignoring hardware accelerators

in NFVi while performing resource allocation for VNF-chains can nullify

the advantages resulting from the use of hardware accelerators. Therefore,

accurate models and techniques for the accelerator-aware VNF-PC (VNF-

AAPC) are needed in order to achieve the overall efficient utilization of all

NFVi resources including hardware accelerators.

This paper investigates the problem of VNF-AAPC, i.e., how to allocate

usual NFVi resources along with hardware accelerators to VNF-chains in

a cost-efficient manner. Particularly, we propose two methods to tackle

the VNF-AAPC problem. The first approach is based on Integer Linear

Programming (ILP) which jointly optimizes VNF placement, chaining and

accelerator allocation while concurring to all NFVi constraints. The second

approach is a heuristic-based method that addresses the scalability issue

of the ILP approach. The heuristic addresses the VNF-AAPC problem by

following a two-step algorithm.

The experimental evaluations indicate that incorporating accelerator aware-

ness in VNF-PC strategies can help operators to achieve additional cost

savings from the efficient allocation of hardware accelerator resources.

2.1 Introduction

The incessant expansion in the number of connected users and network ser-

vices has resulted in an exponential growth of traffic on the networks of tele-

com operators. Telecom infrastructure thus needs to be scaled periodically

to cope with the increasing traffic demands which result in high Capital Ex-

penditure (CAPEX) and Operational Expenditure (OPEX). However, the

growth in Average Revenue Per User (ARPU) has been very marginal due

to the cut-throat competition among the operators. As a result, operators

are forced to seek new network architectures that are scalable, agile and

cost-efficient [1].

Network Function Virtualization (NFV) is a technology that leverages IT

virtualization techniques for consolidating network appliances onto commercial-

off-the-shelf (COTS) server machines. NFV aims to replace Network Func-

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 45

tions (NFs) based on proprietary ASICs, also known as middleboxes, by

their software instances running on the general-purpose platforms consist-

ing of x86 or ARM-based high-volume servers (HVS). The software imple-

mentation of an NF running in a virtualized environment is called Virtual

Network Function (VNF). Fig 2.1 shows the reference architecture of NFV

as proposed by ETSI [2].

The purpose of the virtualization layer is to abstract the NFV Infras-

tructure (NFVi) layer, which includes the compute, storage and networking

resources, from VNFs running over it. Various virtualization technologies,

e.g. VMs, containers, are exploited for the realization of the virtualization

layer.

Replacing network services based on middleboxes with VNF-chains running

Compute

Virtualization Layer

vCompute

VNF

 manager(s)

Orchestrator

Virtual
Infrastructure

Manager(s)

NFV-MANO

Ve-Vnfm

Nf-Vi

Or-Vi

Or-Vnfm

Vi-Vnfm

NFVI

OSS/BSS

Service, VNF, infra. description

Se-Ma

Os-Ma

Storage Network Accelerator

vStorage vNetwork vAccelerator

VNF

EMS

VNF

EMS

VNF

EMS

Figure 2.1: Reference NFV architecture by ETSI [2]. Components shown in blue
needs to be added/updated as a result of inclusion of hardware-acceleration in

NFVi.

on COTS servers has several advantages, such as the reduction in CAPEX

and OPEX, faster time-to-market (TTM) of services, ease of service man-

agement and upgrade, etc [1]. Although, NFV offers several advantages,

replacing NFs middleboxes with VNFs can have a detrimental effect on

their packet-processing performance, e.g. loss of throughput and/or un-

deterministic latency. Furthermore, the growth in the computational ca-

46 Chapter 2

pacity of CPUs is flattening with time due to an expected end of Dennard’s

scaling and Moore’s law in the coming years [3]. Performance improve-

ment of software-based packet-processing platforms is expected to fall short

as compared to the increasing data traffic on telecom networks. There-

fore, matching the performance of middleboxes will be one of the key chal-

lenges faced by operators in the future too with regards to the widespread

NFV adoption. This challenge has led to a recent interest in hardware-

acceleration techniques for VNFs using externally connected hardware de-

vices, e.g. Graphics Processing Units (GPUs), Field Programmable Gate

Arrays (FPGAs), Network Processing Units (NPUs), etc. Hardware accel-

erators and CPUs can be used in conjunction such that CPU-intensive tasks

can be offloaded from VNFs to hardware accelerators and the rest of the

VNF operations can be performed by the CPU of general-purpose hardware

(COTS servers). As a consequence, an improvement in the overall packet-

processing performance can be achieved.

Due to the upward trend of outsourcing network processing to the cloud,

data centers (DCs) are being considered as NFVi. The share of energy

costs in a DC, which includes the cost of energy spent in servers, switches

and cooling of DCs, mainly constitutes the OPEX cost. A large number of

VNF CPU cycles are consumed in packet-processing tasks which otherwise

consume a fraction of energy if implemented in the hardware. For example,

using hardware-acceleration to offload iFFT/FFT in cloud-RAN (C-RAN)

scenarios to FPGAs, GPUs or DSP can result in power saving by about 70%

per carrier [4]. As a consequence, additional VNFs can be accommodated

on the same NFVi as some CPU cores are freed because of the offload to

hardware accelerators.

Accelerators resources are being increasingly integrated with the NFVi layer

along with the usual compute, network and storage (Fig. 2.1). However, the

current Management and Orchestration (MANO) layer is mostly unaware

of the acceleration requirements of VNFs and the location of hardware ac-

celerators in NFVi. As a result, the resource allocation decisions taken by

the orchestrator are agnostic to VNF requirements and the locality of hard-

ware accelerator resources. This could lead to sub-optimal utilization of

NFVi resources. Particularly, the inefficient allocation of hardware acceler-

ator resources can negate the advantages resulting from the use of hardware

accelerators in NFV environments.

The overview of the accelerator-agnostic and accelerator-aware resource al-

location procedure for VNF instantiation is depicted in Fig. 2.2 (a) and

(b), respectively [2]. For the regular accelerator-agnostic VNF orchestra-

tion procedure (Fig. 2.2 (a)), the NFV Orchestrator (NFVO) first validates

the received VNF instantiation request and passes the corresponding VNF

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 47

descriptor (VNFD) to the VNFManager (VNFM). As the VNFM is agnostic

to accelerator requirements of the VNF or existence of any offload capability

in NFVi, it requests the reservation of regular NFVi resources (compute,

storage, and network) via the Virtual Infrastructure Manager (VIM) which

in turn allocates VMs/containers for the VNF and attach them to the net-

work. The VIM acknowledges the NFVO when the resource reservation is

complete. Further, a deployment-specific configuration of VMs/containers

can be performed through the corresponding VNFM after the VNF instan-

tiation is completed. The instantiated VNF cannot offload its operations to

a hardware accelerator as it is not allocated any such special resource. How-

ever, the NFVO can ask the VIM to reserve hardware accelerator resources

for the VNF if it is aware of specific VNF requirements and the presence

of offload capabilities in NFVi as shown in Fig. 2.2 (b). After processing

the accelerator requirements mentioned in the VNFD, the VNFM requests

resource allocation including hardware accelerator resources. The instan-

tiated VNF can now offload specific operations depending on the available

types of accelerator implementations and the amount of resources.

As discussed above, accelerator resource management involves coordina-

NFVO VNFM VIM

Inst. VNF

Alloc.
resources

reserve resources (compute,storage,
nw)

req. validation
and process.

Inst. VNF

ACK

Allocate
regular
resources in
NFVi

NFVO VNFM VIM

Inst. VNF

Alloc.
resources

reserve resources (compute,storage,
NW, HA)

req. validation
and process.

Inst. VNF

ACK

Allocate
regular + HA
resources in
NFVi

ACC

VNF

(a)

ACC

VNF

(b)

Server-node

Physical link

VNF placement

Figure 2.2: Processes involved in (a) accelerator-agnostic and (b)
accelerator-aware VNF instantiation.

tion between various MANO elements such as the NFVO, the VNFM and

48 Chapter 2

the VIM. The management requires acceleration-specific MANO functions

such as acceleration feature discovery, acceleration lifecycle management,

acceleration management. We shall not describe these aspects here as the

focus this chapter is on resource allocation. A detailed discussion on the

relevant functions and processes for acceleration management in NFV can

be found in [5].

In order to achieve efficient utilization of all NFVi resources, it is imperative

to incorporate accelerator awareness in the existing resource allocation mod-

els for NFV. VNF-PC is the most important component of the NFV resource

allocation procedure. The VNF-PC problem is considered as an NP-hard

problem and has been a widely researched topic in the literature [6]. With

the inclusion of hardware accelerator resources in NFVi, solving only the

VNF-PC problem is not sufficient to obtain an efficient allocation of NFVi

resources. The VNF-PC problem needs to be altered in order to incorporate

the resource allocation component for hardware accelerators. We refer to

this new problem as the Accelerator-aware VNF Placement and Chaining

Problem (VNF-AAPC). Our objective in this paper is to model the VNF-

AAPC problem and propose a scalable approach to solve this problem in a

time-efficient manner. In order to address the above-mentioned objective,

we make the following contributions in this paper:

1. To obtain optimal solutions for the VNF-AAPC problem, we present

an Integer Linear Program (ILP) formulation of this problem. It is

a single-step exact method which jointly optimizes three decisions,

namely– (i) VNF placement and (ii) chaining and (iii) accelerator

allocation.

2. We design an efficient heuristic to solve the VNF-AAPC problem for

DC topologies. This heuristic is particularly useful for large-size in-

stances of the VNF-AAPC problem where the ILP model becomes too

time-consuming to solve.

3. We also evaluate the performance of the ILP model and the pro-

posed heuristic on two different data center topologies. Furthermore,

we compare the performance of accelerator-agnostic and accelerator-

aware heuristics. Finally, we present an analysis of the achievable cost

savings resulting from the use of hardware accelerators in NFVi.

Section 2.2 of this paper deals with the discussion about hardware-

acceleration in NFV environments. Relevant literature in the domain of

NFV resource allocation is presented in Section 2.3. Section 2.4 describes

the ILP formulation of the VNF-AAPC problem. The proposed heuristic

to solve the VNF-AAPC problem is discussed in section 2.6. Performance

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 49

evaluation results and comparison of the ILP model with our heuristic are

reported in Section 2.7. Finally, the future works and conclusions of this

paper are presented in section 2.8.

2.2 Hardware-acceleration in NFV

The transition of telecom’s network architectures from the purpose-built

network appliances to VNFs running on COTS servers still faces multiple

challenges [1], [7]. One of the key obstacles is the virtualization of all NFs

without breaking the Service Level Agreements (SLAs) of network services.

However, it has been observed in many instances that the performance

of VNFs is significantly degraded as compared to their hardware counter-

part [8]. Authors in [8] investigated the impact of virtualizing firewall on

its packet-processing performance. Processing latency in the virtual firewall

could even reach ten times the processing latency in the case of the hard-

ware firewall. Performance bench-marking of IPSec is reported in a white

paper by Intel in [9]. The results show that the processing of 48Gbps IPSec

traffic requires on average 9.5 CPU cores. The same traffic can, however, be

processed using 4.6 CPU cores when accelerating AES-GCM de/encryption

using a hardware accelerator resulting in a saving of about half of the CPU

cores. Therefore, not just the performance boost of VNFs but also the over-

all reduction in CPU utilization paves the way for hardware accelerators in

NFV environments.

A large number of VNFs involve CPU-intensive tasks like de-duplication,

cryptography, compression, etc [9], [10], [11], [12], [13], [14], [15]. The soft-

ware implementation of these tasks has been found to be very energy ineffi-

cient (numbers of operations performed/energy consumed) as compared to

their hardware implementation resulting in excessive CPU utilization. The

motivation behind using hardware accelerators in NFV environments is that

specific VNF components run more efficiently if implemented in hardware as

opposed to software running on a CPU of a general-purpose COTS server.

For example, GPUs have been used to speedup video-transcoding applica-

tions (H.264 and H.265) by 9.6x over software-only solutions while being

6.4x more energy efficient [14].

Packet-processing in a VNF is usually accomplished by sequentially execut-

ing instructions of the VNF (VM/container) on one or more CPU cores.

The packet-processing paradigm in architectures like FPGAs, NPUs, and

GPUs is fundamentally different from that of a CPU. A GPU chip consists

of thousands of computational cores that can be delegated execution units

which are also known as GPU threads. Each GPU core executes the same

NF on different packets sent by the CPU in the GPU memory [16]. With

50 Chapter 2

the large thread-level parallelism of GPUs and good memory communica-

tion (low latency and high bandwidth), high packet-processing performance

can be achieved. GPUNFV is a GPU-based NFV system which demon-

strated line rate packet-processing for stateful VNFs (e.g. flow-monitor,

firewall) by exploiting the parallelism of GPUs [17]. FPGAs, on the other

hand, contain millions of logic elements each of which contains lookup tables

(LUTs) for implementing combinational logic and registers to store inter-

mediary results. FPGAs also contain Block RAM (BRAM) to store a large

amount of data that needs to be read (written) from (to) the main memory

(RAM). Logic elements on an FPGA can be configured to realize different

packet-processing functionalities. The parallelism in CPUs and GPUs is

limited to the number of cores it has. Due to the massive amount of par-

allelism available on an FPGA at the gate-level, many processing tasks can

be easily pipelined [18]. As a result, packet-processing tasks in VNFs can

be offloaded to an FPGA very efficiently.

Hardware acceleration can be applied to a variety of VNFs that can ben-

efit from the different kinds of parallelism available on hardware accelera-

tors. Table 2.1 lists various VNFs alongside their sub-tasks that can benefit

from offloading to hardware accelerators. VNFs which contain components

like cryptography, compression, de/encoding, etc, can be very efficiently of-

floaded to hardware accelerators. Using an example of IPSec VNF, we next

describe the most common approach of hardware-acceleration in NFV, i.e.,

FPGA look-aside acceleration.

2.2.1 VNF hardware-acceleration example

IPSec tunneling is one of the most popular ways of securing inter-network

communication between branch offices of an enterprise or LTE networks via

encrypted tunnels [19]. Fig 2.3 (a) shows a standard IPSec setup. At one

end of the IPSec tunnel, a VM containing IPSec application (e.g. libreswan
1) is running on a server. The IPSec VNF must perform all the required

cryptographic functions (en/decryption and SHA) on IPSec packets. These

functions are usually provided by a software library (e.g. SSL) which con-

tains implementations for various ciphers (e.g. DES-128, AES-128,256) and

hashes (e.g. md5, SHA-256,512). Nowadays, certain CPU architectures

(e.g. x86 and AMD) offer AES-NI and SHA-NI instructions dedicated for

de/encryption and hashing operations which results in a better performance

as compared to the traditional CPU architectures. Despite this improve-

ment, a large number of CPU cores are still required to process the IPSec

1https://libreswan.org/

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 51

Table 2.1: List of VNFs whose performance was improved after the indicated
tasks were offloaded using hardware accelerators.

VNF Component
functions for
acceleration

References Improvements

IPSec,
SSH

AES en/de-
cryption,
SHA hash

[9], [10],
[11], [12]

CPU usage reduction of 50%
and 94% at packet size of 578B
and 9000B, respectively [9].

DPI Multihash,
Bloomfilter,
regex,

[12], [13] 20x throughput improvement
[13].

Media
Transcod-
ing

VP8, H.264,
H.256

[14] 9.6x gain in performance (FPS)
and 6.4x overall efficiency (per-
formance/watt).

vRAN RS,
FFT/iFFT,
Turbo de/-
coding

[4], [15] C-RAN power consumption re-
duction from 70W/carrier to
18W/carrier when i/FFT are
offloaded. Turbo decoding time
can be reduced by 50-60% by
offloading it to a accelerator.

Dedup Rabin hash,
marker selec-
tion, chunk
hash

[13] 8.2x improvement in through-
put over software-only Dedup
VNF.

traffic at the line-rate, e.g., 9.5 CPU cores are required to handle IPSec

traffic @ 48Gbps [9] as compared to only 3.3 CPU cores for processing of

plain IP traffic (without IPSec). Moreover, packet-processing cost (CPU cy-

cles/packet) varies with the packet size which makes software-based IPSec

solution inefficient for the IPSec packets of longer lengths (> 1200 B).

Next, we describe the look-aside VNF hardware-acceleration approach tak-

ing IPSec as an example. A hardware designer typically first writes the

required hardware accelerator (e.g. AES-256, SHA-512) in a Hardware De-

scriptor Language (HDL), e.g. VHDL or Verilog. The HDL design is then

compiled to a programming file, called bitfile using FPGA synthesis and

implementation tools. The bitfile is then used to program the FPGA fab-

ric in order to instantiate the desired accelerator function. The accelerator

can then be modified or a new accelerator could be instantiated by re-

programming the FPGA fabric with the bitfile corresponding to the new

accelerator. This makes FPGAs re-programmable, unlike ASICs which of-

fer a limited amount of configuration. In Fig. 2.3 (b), the AES (encryption

52 Chapter 2

and decryption) and SHA hash accelerators are instantiated by downloading

their bitfiles to the FPGA card. Now, AES-256 de/encryption and SHA-

512 hash operations can be offloaded from the IPSec VNF to accelerators

running on the FPGA card [9]. For each IPSec packet, its payload is sent

(a) (b)

IPSec

Host

NIC

CPU MEM

Host

NIC

CPU MEM
AES-256

enc/dec

FPGA

IPSec

PCIe
PCIe SHA-512

hash

Figure 2.3: Illustration for the setup in (a) non-accelerated and (b) accelerated
operation of IPSec VNF.

to the accelerator memory in order to perform the required cryptographic

functions. After the function computation is over, the result of the op-

eration is copied back from the accelerator memory to the main memory.

The communication between the main memory and accelerators is accom-

plished via the PCIe bus. The overhead due to communications between

CPUs and accelerators becomes insignificant for large packet sizes. More-

over, hybrid chips like Intel Xeon+FPGA integrated-FPGA CPUs provide

tight coupling between CPUs and FPGAs thereby both CPUs and FPGAs

can access the same memory and can avoid excessive overhead due to data

transfers between them [20]. Nevertheless, many CPU cores are relieved

from performing intensive cryptographic operations, thus a large number of

CPU cores are free to run other workloads or VNFs [9].

2.2.2 Trade-offs

Although the highest programmability and flexibility can be achieved by

running VNFs on CPUs (x86 or ARM), NF implementations based on tech-

nologies like GPUs, FPGAs, NPUs could be necessary for some performance-

critical VNFs. Therefore, a spectrum of VNF implementation technologies

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 53

results in a variety of solutions, ranging at one end, the highly-flexible and

full-software NFs and at the other end, the high-performance ASIC imple-

mentation with hardware accelerated VNFs situated in between. Authors

in [19] proposed an architecture for the unified handling and abstraction of

hardware accelerators in order to ease the manageability of accelerators. A

virtual accelerator layer along with standard interfaces can be used in order

to avoid compatibility and portability issues. This also helps to separate

the concerns of VNF developers and hardware accelerators designers. By

abstracting hardware accelerators, the same VNF image can be used for

many hardware accelerators without any modification.

Fig. 2.4 illustrates the comparison between various VNF implementation

technologies based on their performance and flexibility metrics [19]. A

purpose-built ASIC implementation of an NF will offer the highest packet-

processing performance but a very limited configuration will be possible e.g.

updating the forwarding tables of a router. On the other hand, platforms

based on COTS servers offer huge programmability/flexibility, e.g. update

of protocols, at the cost of performance. Although, devices have intermedi-

ate performance and flexibility, e.g. GPUs and FPGAs can also be used to

realize full VNFs, however; the more complex the packet processing task is,

the more challenging it is to implement on an FPGA or GPU. Hybrid plat-

forms with a combination of CPU + hardware accelerator (CPU+FPGA or

CPU+GPU) are the most popular approach to achieving high-performance

without losing too much programmability/flexibility. In hybrid platforms,

the performance-critical tasks, e.g. en/decryption and hashing, etc, are im-

plemented in the hardware and other complex tasks are still run in software

running on a CPU.

Keeping into account service requirements and trade-offs of various tech-

nologies, telecom operators or third-party VNF developers have to select

the right platform for their VNF implementation. For example, IPSec VNF

running on a CPU when offloaded to an FPGA can improve its throughput

and halve its CPU usage with a fraction of more investment.

There are two popular modes of using hardware accelerators in the NFV

environments, namely– look-aside and bump-in-the-wire [21]. The look-

aside mode of hardware-acceleration is generally used to offload compute-

intensive algorithms, e.g., offloading crypto-operations of IPSec to an FPGA.

“Bump-in-the-wire” (in-line) is another mode where packet processing is

done on the fly, e.g. on P4 switches or smartNICs, as they are transferred

to/from the network. Bump-in-the-wire mode is therefore preferred mode

to accelerate first/last VNFs of a VNF-chain [3] as accelerating VNFs. In

this paper, our focus will be on modeling scenarios with the look-aside mode

of acceleration. However, to accommodate scenarios with bump-in-the-wire

54 Chapter 2

Performance

F
le
x
ib
ili
ty

CPU

FPGA

GPU/NPU

ASIC

low high

h
ig
h

CPU+Accel.

Figure 2.4: Comparison of various technologies for VNF implementation [19].
Green region: CPU+GPU and Orange region: CPU+FPGA.

acceleration, appropriate constraints regarding required position-aware ac-

celeration and latency requirements can be added to the proposed model.

Multiple VNFs running on a server node can also share the same accelera-

tor instance deployed on hardware accelerator cards. The network packets

reaching a VNF running on a host are transferred to a particular accelera-

tor instance over the PCIe bus. Offloading packet processing from stateless

VNFs to accelerator instances is straightforward, as the order of incoming

packets is not important. To offload stateful VNFs, where the state of a

VNF is required to process packets, input packets along with the VNF state

are transferred to the accelerator instance [17]. The state in the VNF is up-

dated after the completion of processing in the accelerator instance.

2.3 Related Works

Various mathematical models and algorithms have been proposed to tackle

the VNF-PC problem. The solution to the VNF-PC problem attempts to

allocate NFVi resources for the placement and chaining of VNFs. This prob-

lem is similar to Virtual Network Embedding (VNE) problem, a well-known

problem in the area of network virtualization [6]. In the VNF-PC problem,

VNFs are equivalent to virtual nodes of VNE which are chained by virtual

links. In addition to that, VNF-PC has an accompanying optimization goal

which is described by the objective function of the problem. The objec-

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 55

tive function could be the minimization of power consumption, the required

number of server nodes, and links or maximization of resiliency, QoS, net

profit, etc.

The VNF-PC problem has been tackled using two different approaches in

the past. The first approach is to exploit exact methods that result in an op-

timal solution but this approach is generally useful for small-scale instances

of the VNF-PC problem. Another approach to solve the VNF-PC problem

is to use heuristics and thereby compromise a small amount of efficiency for

scalability.

Using an ILP formulation, authors in [22] modeled resource allocation in

a hybrid NFV scenario where services are provided using both dedicated

hardware appliances and VNFs. This model was evaluated using two types

of service chain requests and a small service provider scenario. A Mixed

Integer Quadratically Constrained Program (MIQCP) model for the VNF-

PC optimization problem was introduced in [23]. Pareto set analysis was

performed to investigate the trade-offs between three different objective

functions. The evaluation of the model shows the objective function (e.g.

minimization of latency, link utilization or allocated nodes) has a direct im-

pact on the VNF placement and chaining. The authors in [24] formulated

the multi-objective VNF-PC problem considering both legacy Traffic Engi-

neering (TE) ISP goals and combined TE-NFV goals.

Because of the inherent complexity of the VNF-PC problem, exact ap-

proaches based on ILP/MILP become impractical for realistic network sizes.

Therefore, many heuristic-based algorithms have also been proposed to solve

this problem in a reasonable time.

The problem of Elastic VNF Placement (EVNFP) was studied in [25] and

an ILP model was presented for minimizing operational costs in NFV sce-

narios. The authors also developed an algorithm called Simple Lazy Facility

Location (SLFL) in order to solve the EVNFP problem in polynomial time.

Evaluations show that SLFL reduced operational costs by 5-8% and also

increased the request acceptance rate by 2x as compared to the first-fit and

random alternatives.

S. Sahhaf et al. studied the decomposition and embedding of network ser-

vices in [26]. An ILP model was proposed whose objective was to minimize

the total cost due to the mapping of different decomposed VNF components

(e.g. VM, container, DPDK) to the physical nodes in NFVi. A heuristic

algorithm, consisting of two phases– backtracking and mapping, was also

proposed. The experimental results show a decrease in mapping cost and

an increase in the request acceptance ratio in the long run for both ILP and

heuristic approaches.

F. Carpio et al. studied the problem of network load balancing for the de-

56 Chapter 2

ployment of Service Function Chains (SFCs) [27]. In particular, the authors

addressed the problem of distance-to-data center by the use of VNF repli-

cas in order to load balance the network. Three approaches: ILP model,

Genetic Algorithm, and random fit placement algorithm were designed and

compared to realize efficient VNF placement and replication method in an

NFV environment.

Although a lot of resource allocation studies have been carried out in the

past, only two studies have considered hardware accelerators in their mod-

els. H. Fan et. al. proposed an architecture to implement uniform deploy-

ment and allocation of accelerator resources in NFV environments [28]. The

authors proposed an algorithm to achieve efficient allotment of accelerator

resources in forwarding and server nodes. The algorithms take as an input

the network topology and the capacity of physical resources and output the

amount of accelerator resources that should be provided on the forwarding

and server nodes. This study concerns the optimization of accelerators re-

source provisioning not with the optimization of accelerator allocation to

VNFs.

The concept of heterogeneous components has been described in [29]. A het-

erogeneous service consists of multiple implementation options that could

be deployed to serve the dynamic requirements of the service. The paper

studied the problem of joint Scaling, Placement and Routing (SPRING) for

heterogeneous services. To address the SPRING problem, a MILP formula-

tion and a heuristic algorithm were proposed. The SPRING model focuses

on efficient resource allocation in heterogeneous infrastructure with lower

processing times. This paper does not consider the distribution of hardware

accelerator resources in a data center. Furthermore, VNF-PC decisions did

not take into account the communication between the hardware accelerator

and the CPU on a server node.

This work is a major extension to our previous work where we only modeled

VNF placement in a heterogeneous NFV environment [30] using a best-fit

based approach. Here, we address the complete problem of accelerator-

aware VNF placement and chaining along with a thorough evaluation of

the ILP model and heuristics.

2.4 Problem Overview

Services in the NFV domain are realized by processing network traffic

through a sequence of VNFs. In order to fully exploit the benefits of NFV

technology, it is necessary to efficiently allocate NFVi resources to VNF-

chains. Resource allocation requires a mapping of the service’s VNF For-

warding Graph (VNF-FG) to NFVi resources [6]. A VNF-FG consists of

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 57

nodes representing VNFs and edges stand for virtual links between VNFs.

Therefore, the mapping process can be thought of as a two steps process,

namely (i) VNF placement and (ii) VNF Chaining. “VNF placement” in-

volves the assignment of VNFs to COTS servers, whereas the “VNF chain-

ing” step involves the allocation of a path in the physical network to every

virtual link of VNF-FG. “VNF chaining” ensures the appropriate steering

of network traffic through the sequence of VNFs constituting the service.

Together this problem is referred to as the VNF placement and chaining

(VNF-PC) problem.

In addition to the usual compute, network and storage resources, NFVi also

includes hardware accelerator resources. With the inclusion of hardware

accelerators in NFVi, VNF-PC models must be revised. In order to ensure

efficient utilization of all NFVi resources, both placement and chaining de-

cisions should take into account the accelerator resources (e.g. total logic

elements and BRAM of FPGAs, cores/threads of GPUs) along with the

usual NFVi resources, i.e. compute, storage and network. This problem

will be referred to as the accelerator-aware VNF placement and chaining

(VNF-AAPC) problem.

We motivate the importance of modeling the VNF-AAPC problem by a

simple example illustrated in Fig 2.5. As an input, NFVi consists of five

server nodes each with 5 CPU cores and connected with each other as shown

in Fig 2.5. One of the server nodes is equipped with a hardware accelerator

card connected over the PCIe bus. The objective of the VNF-PC problem is

to deploy VNF-chains s1 and s2 using as few server nodes as possible. The

CPU requirement of all VNFs is indicated in the boxes above each VNF.

VNF f12 is an ‘accelerate-able’ VNF, i.e., it consumes 4 CPU units when it

is not accelerated and 2 CPU units when it is able to offload its operations

to an accelerator on a hardware accelerator card. For the sake of simplicity,

we assume sufficient bandwidth is available on physical links for the chain-

ing of VNFs. The result of the usual (accelerator-agnostic) VNF placement

method, where only CPU resources are considered, is shown in Fig. 2.5

(a). In total, five server nodes are required for the deployment of s1 and

s2. With the accelerator-aware strategy, however, only four server nodes

are required for the placement of the same VNF-chains as shown in Fig 2.5

(b). This is because the VNF f12 is deployed on a server node attached

with a hardware accelerator card and is able to reduce its CPU requirement

by half.

58 Chapter 2

f
11

f
12

f
13

3

f
14

4 2 2 3

f
21

f
22

f
23

2 3 3

ACC

f
11

f
12

f
13

3

f
14

4 2 2 3

f
21

f
22

f
23

2 3 3

ACC

(a) (b)

Physical machine (5

CPU cores)

Physical link

VNF placement

ACC Available accelerator

Figure 2.5: Illustration comparing VNF placement in accelerator-agnostic and
accelerator-aware VNF placement scenarios. The CPU requirement of each VNF

is indicated in the box above it.

2.5 ILP Formulation

Next, we introduce notations, decision variables, objective function and con-

straints required for the ILP formulation of the VNF-AAPC problem. The

ILP model for the VNF-AAPC problem provides a single-step method for

obtaining optimal resource allocation.

Table 2.2 gives the description of the notations used in the formulation.

NFVi network is represented by a connected directed graph G = (N,E).

Set N consists of all the physical nodes in the NFVi network and E repre-

sents all the physical links between nodes. A node can be a computational

device (e.g. COTS server) or a forwarding device (e.g. switch). N c ⊂ N

denotes a set of all COTS servers having computational resources required

to run VNFs.

The capacity of different resource types in a node n ∈ N c is denoted by

the following three parameters: Rcpu(n), Rbus(n) and Racc(n). Rcpu(n)

denotes the total number of CPU cores available for running VNFs on node

n.

The IO communication capacity of a node is dependent on the bandwidth

(Mbps) of the PCI(e) bus which is denoted by Rbus(n). The same PCI(e)

bus is shared for two tasks. First, for communication with accelerators and

secondly for sending/receiving packets to/from the network using NIC card.

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 59

The amount of resources present on the hardware accelerator card attached

to server node n is represented by Racc(n). We use Racc(n) only to denote

the total number of logic elements present on an FPGA board. However,

other resources like the amount of BRAM available on an FPGA can also

be represented similarly.

A is a catalog of all types of accelerator implementations available for in-

stantiation on the hardware accelerator cards attached to server nodes. For

example, if FPGA bitfile implementations for only AES and SHA accelera-

tors are available, i.e. A = {AES, SHA}, en/decryption (AES) or hashing

(SHA) tasks from an IPSec VNF can be offloaded to AES and SHA acceler-

ators running on an FPGA card. However, tasks like en/decoding involved

in the vTC (video transcoding) VNF cannot be offloaded using any accel-

erator implementation present in A.

Each implementation of an accelerator type a ∈ A requires a certain amount

of resources, represented by r(a), on the hardware accelerator card. Again,

r(a) can be used to represent the requirement of any type of resource on

a hardware accelerator card. In our formulation, r(a) denotes only the re-

quired number of logic elements to implement an accelerator of type a on

an FPGA card.

We assume each service-request s received by the telecom operator consists

of a VNF-FG Gs and corresponding bandwidth requirement (ts). The VNF-

FG Gs = (Fs,Ls) of the service-request s consists of a set of VNFs Fs and

a set of virtual links between VNFs denoted by Ls. Two consecutive VNFs

of the service-request s denoted by fs
k and fs

k+1 are joined by a virtual link

(fs
k , f

s
k+1) ∈ Ls. For the sake of simplicity, we assume the traffic compres-

sion ratio of every VNF is 1. This implies that the amount of traffic (ts)

doesn’t change while passing through a sequence of VNFs.

CPU requirement for a VNF fs ∈ Fs, in terms of the total number of cores

required, is denoted by cpu0(f
s) and the reduction in the total number of

cores due to offloading is denoted by cpur(f
s). In other words, cpu0(f

s)

denotes the number of CPU cores required by the VNF fs to process the

network traffic coming at the rate ts.

The type of accelerator required for offloading a VNF fs is denoted by

atype(fs).

αn
fs is a binary variable used to indicate if VNF f of the service-request s is

placed on node n. Allocation of an accelerator to VNF fs placed on node

n is indicated by βn
fs . A computational node n ∈ N c is said to be in use if

at least one VNF is placed on n. This is denoted by a binary variable xn.

Instantiation of an accelerator of type a on the hardware accelerator card

attached to n is indicated by a binary variable δna .

The binary variable γ
ni,nj

fs
k
,fs

k+1

is an indicator variable which denotes if the

60 Chapter 2

virtual link (fs
k , f

s
k+1) ∈ Ls mapping to a path in G contains physical-link

(ni, nj) or not.

In a scenario when a telecom operator leases server nodes from an Infrastruc-

ture Provider (InP) to deploy VNF-chains, she ought to acquire a minimum

number of server nodes as possible. The cost of a server node is included

in the total cost if that node is used to host at least one VNF. The cost

of using a computational node n ∈ N c is denoted by Cn (in $). Usually,

parameters like Rcpu(n), Rbus(n) and Racc(n) determine the value of cn.

Next, we discuss the objective function and constraints describing the

ILP model for the accelerator-aware VNF placement and chaining problem.

2.5.1 Objective

The objective (2.1) of our ILP formulation is to minimize the total cost

incurred to the operator from the use of server nodes, some of which are

attached to a hardware accelerator card. The decision variable xn is used

to determine whether a server node is used or not.

obj : min
(

∑

n∈Nc

cnxn

)

(2.1)

2.5.2 Constraints

We classify all the constraints in four categories: (i) Physical node con-

straints, (ii) Link Mapping constraints, (iii) Accelerator Constraints and

(iv) Auxiliary Constraints, which are explained as follows.

2.5.2.1 Physical Node Constraints

The sum of effective CPU usage of all VNFs placed on any node should not

surpass its maximum CPU capacity. This constraint in depicted in (2.2).

The constraint in (2.3) indicates the finite availability of resources on the

hardware accelerator card for the instantiation of accelerators.

The rate of communication between VNFs and accelerators instantiated on

the hardware accelerator card is bounded by the maximum bandwidth of

the PCIe bus, as indicated in (2.4). The first term in the LHS of (2.4)

is the bus bandwidth consumption due to the traffic between neighboring

VNFs. First, summation over the traffic coming from VNFs (fs
k) placed

on server node ni to its neighboring VNFs (fs
k+1) placed on nj is carried

out and a factor of two is there to represent the traffic both coming to and

from the VNFs running on server node ni. The term 2tsβ
ni

fs represents the

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 61

Table 2.2: Description of parameters and decision variables

Input parameters

Notation Description
G Directed graph G = (N,E) represents the network.
N Set of all forwarding and computational nodes within the network.
N c Set N c ⊂ N contains all nodes of the network with positive com-

putational resources (all server nodes).
b(ni, nj) Maximum bandwidth (in Mbps) of a physical-link (ni, nj) ∈ E.

**
Rcpu(n) Maximum CPU resources (in total number of CPU cores) available

on n ∈ N c.
Racc(n) Maximum accelerator-fabric resources (in total number of logic

elements) available on n ∈ N c.
Rbus(n) Maximum bandwidth (in Mbps) of the PCIe bus of node n ∈ N c.

A Set of all available accelerator types (in NFVi).
r(a) Resource requirement (logic elements) of the accelerator type a ∈

A.
S Set of all VNF-chains.
Gs Directed graph Gs = (Fs,Ls) represents VNF-FG of request s ∈

S.
Fs Set of all VNFs in VNF-FG of the VNF-chain s ∈ S.
Ls Set of all directed virtual links in the VNF-FG of the VNF-chain

s ∈ S.
ts Throughput requirement (Mbps) of the VNF-chain s ∈ S.

cpu0(f
s) CPU requirement (cores) of VNF f ∈ Fs .

cpur(f
s) CPU reduction (cores) for VNF f ∈ Fs.

atype(fs) Type of accelerator needed for acceleration of VNF fFs.
cn Cost ($) of running a computational node n ∈ N c.

Decision variables
Notation Description

αn
fs Binary variable indicates if VNF fs of VNF-chain s is placed on

n.
βn
fs Binary variable indicates if VNF fs of VNF-chain s is accelerated

on n.
xn Binary variable indicates if computational node n ∈ N c is used

for hosting at-least one VNF.
δna Binary variable indicates if accelerator of type a is instantiated on

the node n
γ
ni,nj

fs
k
,fs

k+1

Binary variable indicates if the virtual link (fs
k , f

s
k+1) mapping to

a path in the physical-network contains the physical-link (ni, nj),
(ni, nj) ∈ E.

62 Chapter 2

bandwidth utilization due to communication between the VNF fs and ac-

celerator fabric on the node n.

∑

s∈S,fs∈Fs

αn
fscpu0(f

s)− βn
fscpur(f

s) ≤ Rcpu(n) ∀n ∈ N c (2.2)

∑

a∈A

r(a)δna ≤ Racc(n) ∀n ∈ N c (2.3)

∑

∀nj∈N

((ni,nj)∈E)

∑

s∈S,
(fs

k ,f
s
k+1)∈Ls

2tsγ
ni,nj

fs
k
,fs

k+1

+
∑

s∈S,
fs∈Fs

2tsβ
ni

fs ≤ Rbus(ni) ∀ni ∈ N c

(2.4)

2.5.2.2 Physical link constraints

The flow-conservation constraint is described in (2.5). This constraint en-

sures that a virtual link (fs
k , f

s
k+1) is always mapped to a physical path in

the network. Also, it ensures that for a non-computation node n ∈ N \N c,

the net-traffic outflow or inflow is always zero.

The constraint in (2.6) guarantees that the sum of bandwidths allocated to

virtual links on a physical-link (ni, nj) never exceeds its capacity b(ni, nj).

∑

∀nj∈N

((ni,nj)∈E)

(γ
ni,nj

fs
k
,fs

k+1

− γ
nj ,ni

fs
k
,fs

k+1

) = (αni

fs
k
− αni

fs
k+1

)

∀s ∈ S, ∀(fs
k , f

s
k+1) ∈ Ls, ∀ni ∈ N

(2.5)

∑

s∈S
(fs

k ,f
s
k+1)∈Ls

tsγ
ni,nj

fs
k
,fs

k+1

≤ b(ni, nj) ∀(ni, nj) ∈ E (2.6)

2.5.2.3 Accelerator constraints

The constraint in (2.7) is a consequence of the fact that a VNF fs can be

given access to an accelerator on a node n only if it is placed on it.

The constraint in (2.8) ensures that an accelerator of a particular type is

instantiated if a non-zero number of VNFs are using that accelerator type.

This constraint is easily linearized by replacing it with a pair of constraints

indicated in (2.9a-2.9b). M1 (big M) in constraint (2.9b) is a constant with

a value greater than the total number of VNFs fs in all the service-chain

requests s ∈ S.

βn
fs ≤ αn

fs ∀n ∈ N, ∀s ∈ S, ∀fs ∈ Fs (2.7)

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 63

δna =











1, if
∑

∀s∈S,∀fs∈Fs,
a=atype(fs)

βn
fs ≥ 1

0, otherwise

∀n ∈ N, ∀a ∈ A (2.8)

δna ≤
∑

∀s∈S,∀fs∈Fs

a=atype(fs)

βn
fs ∀n ∈ N, ∀a ∈ A (2.9a)

∑

∀s∈S,∀fs∈Fs

a=atype(fs)

βn
fs ≤ M1δ

n
a ∀n ∈ N, ∀a ∈ A (2.9b)

2.5.2.4 Auxiliary Constraints

The set of constraints in this subsection restrict the value of decision vari-

ables xn, α
n
fs , βfs , δna , γ

ni,nj

fs
k
,fs

k+1

.

A server node is considered to be running if at least one VNF is mapped

onto it, as indicated by the constraint in (2.10). The pair of constraints

(2.11a - 2.11b) forces xn to be equal to 1 if at least one VNF is placed on

node n. In constraint 2.11b, M2 is a constant with a value greater than the

total number of VNFs fs in all service-chain requests s ∈ S.

xn =







1, if
∑

∀s∈S,∀fs∈Fs

αn
fs ≥ 1

0, otherwise
∀n ∈ N (2.10)

xn ≤
∑

s∈S,fs∈Fs

αn
fs ∀n ∈ N (2.11a)

∑

s∈S,fs∈Fs

αn
fs ≤ M2xn ∀n ∈ N (2.11b)

Each VNF in a service-chain request must be placed only once. This

is represented by the constraint in (2.12). The set of constraint in (2.13)

ensures decision variables αn
fs , βn

fs , δna and γ
ni,nj

fs
k
,fs

k+1

can only take binary (0

or 1) values.

∑

n∈N

αn
fs = 1 ∀s ∈ S, ∀fs ∈ Fs (2.12)

xn, α
n
fs , βn

fs , δna , γ
ni,nj

fs
k
,fs

k+1

∈ {0, 1}

∀n ∈ N, ∀(ni, nj) ∈ E, ∀s ∈ S, ∀fs ∈ Fs, ∀(fs
k , f

s
k+1) ∈ Ls

(2.13)

The above ILP formulation implements a single-step method to solve the

VNF-AAPC problem. For a given NFVi graph G and a set of requested

64 Chapter 2

service-chain requests S, the above ILP formulation not only gives an opti-

mum VNF placement αn
fs and chaining γ

ni,nj

fs
k
,fs

k+1

solution but also gives an

optimum accelerator allocation βn
fs for VNFs. As the VNF-PC is consid-

ered to be an NP-hard problem, it does not scale with the problem size.

The accelerator awareness further increases its complexity. As a result, the

ILP formulation of the VNF-AAPC problem is challenging to solve for the

networks of realistic sizes. In order to address the non-scalability issue with

ILP, we propose a method based on heuristics for solving the VNF-AAPC

problem in a time-efficient manner.

2.6 Proposed Heuristics

Next, we describe two heuristic-based algorithms for solving the VNF-PC

problem for NFVi containing hardware accelerator resources along with the

usual resources. The first heuristic we propose is an accelerator-agnostic

algorithm that does not take into account the presence of hardware ac-

celerators in NFVi while performing VNF-FG mapping. This algorithm

will serve as a baseline for the evaluation of our second algorithm, i.e.,

accelerator-aware VNF-PC heuristic.

2.6.1 Accelerator-agnostic VNF-PC heuristic

The accelerator-agnostic VNF-PC heuristic involves a hierarchical deploy-

ment of VNF-chains [31]. Hierarchical deployment exploits the classification

of nodes into different levels of DC topologies, e.g. different levels in a leaf-

spine DC topology are server, rack, and cluster. Starting from the lowest

level, i.e. server node level, VNF-PC is attempted at each level until the

VNF-chain is deployed at a level. Also, the previously used server node is

checked for the placement of subsequent VNF of a VNF-chain resulting in

the localization of VNFs of the same VNF-chain.

The pseudo-code for the accelerator-agnostic VNF-PC algorithm is described

in Alg. 2.1. The procedure AgPlaceChain is called from Alg. 2.2 in order to

map VNF-FG (Gs = (Fs,Ls)) corresponding to all service-requests (line 3)

onto NFVi. The mapping of each VNF-FG is attempted at different levels

of the data center, e.g., in leaf-spine topology, first at node level, then at

rack level, and at last at the cluster level (Alg. 2.2). Mapping on node level

is done by assigning NodesSet equal to the set of all server nodes ∀n ∈ N c.

If no one server node is able to allocate all the VNFs of a chain, NodesSet is

assigned all nodes per rack. If the mapping of a VNF-chain is not possible

to any of the rack, NodesSet is assigned all the nodes in the cluster and

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 65

VNF-PC is attempted again.

In Alg. 2.1, for each VNF fs ∈ Fs placement is first tried on the previ-

ously used node np. A new node is only selected if enough CPU resources

aren’t available on np (line 7-13). An attempt for accelerator allocation is

done on node np (line 14) by invoking procedure AccelVNF. When all VNFs

∀fs ∈ Fs are placed, virtual-links are mapped to physical-paths in G us-

ing the procedure ChainVNFs. If the placement of any VNF fs ∈ Fs fails

or procedure ChainVNFs returns False, all resources are updated to their

previous values just after the start of the procedure AgPlaceChain (lines

23-25).

The procedure AccelVNF (Alg. 2.3) checks whether an accelerator can be

granted to VNF fs node np. This is done by verifying whether enough

CPU and bus resources are available on np (line 2). If atype(fs) is not

already instantiated on the hardware accelerator card attached to node np,

it is checked whether enough accelerator resources are available on the card

(lines 5-10) to instantiate the accelerator type atype(fs). All the required

resources are updated accordingly if fs is allocated an accelerator (lines

9-13) in this procedure.

The chaining procedure for mapping of virtual links to physical paths is de-

scribed in Alg. 2.4. For each virtual link (fs
k , f

s
k+1) ∈ Ls, all set of shortest

paths between two physical nodes hosting fs
k and fs

k+1 are stored first in P

(line 7). Each path is checked sequentially for its available bandwidth on all

of its physical links using the procedure bw (lines 9). If a path with enough

bandwidth is available, γ[fs
k , f

s
k+1] (line 13) along with bus (line 12) and

link bandwidths (line 11) are updated for every physical link (∀(ni, nj) ∈ p)

in the path p. If any virtual link cannot be mapped to a physical path,

the variables values are reverted to their previous values at the start of the

procedure (lines 16-19).

An example illustrating the working of the accelerator-agnostic VNF-PC

heuristic is shown in Fig. 2.6. Consider two VNF-chains (s1 : f11 → f12 →

f13 → f14, s2 : f21 → f22 → f23) supposed to be deployed on a given NFVi,

which here is a DC in the leaf-spine topology. The heuristic starts with the

chain s1 and first tries its deployment on the server node level. As no server

node can accommodate all VNFs of this VNF-chain, the heuristic moves to

the next level of the topology, i.e., rack level. Again, no rack has enough

resources to host the complete VNF-chain s1. Therefore, the heuristic now

considers all server nodes of the cluster and uses rack0 and rack1 for the

placement of VNF-chain s1. After the placement of all VNFs of the first

chain is completed, network bandwidth is then allocated to the virtual links

of the VNF-chain via the ChainVNFs procedure as shown in Fig. 2.6. The

same process will be followed for the deployment of the VNF-chain s2 which

66 Chapter 2

is deployed in rack2.

rack 0

f
21

f
22

f
23

2 3 3

ACC

rack 1 rack 2

f
11

f
12

f
13

3

f
14

4 2 2 3

Physical machine (5

CPU cores)

Physical link

VNF placement

ACC Available accelerator

Virtual link

Figure 2.6: Illustration showing placement and chaining in accelerator-agnostic
VNF-PC heuristic on the leaf-spine topology.

2.6.2 Accelerator-aware VNF-PC heuristic

The accelerator-aware VNF-PC heuristic combines hierarchical deployment

with the segmentation of VNF-chains. A VNF-chain is first split at ’accelerate-

able’ VNFs, i.e. VNFs which require hardware accelerators ∀s, ∀fs, atype(fs) ∈

A. VNF-chain deployment is then performed in two phases. In the first

phase, VNF placement along with accelerator-allocation is performed for

all accelerate-able VNFs. The sub-graphs (VNF-FGs) corresponding to the

remaining VNF-chain segments are mapped to the NFVi using the hierar-

chical deployment in the second phase.

The procedure for allocation of accelerators to VNFs (PlaceAccelVNFs) is

shown in Alg. 2.5. First, a list of all server nodes attached with a hard-

ware accelerator card is stored in Na. Accelerate-able VNFs constituting

the VNF-chain request s are assigned to F s
acc. Accelerator allocation is

then attempted for every VNF in F s
acc. A list of server nodes with enough

resources and having accelerator atype(fs) already instantiated on its at-

tached hardware accelerator card is stored in Nfs (line 6). Out of all server

nodes in Nfs , a node, the closest node where (any) previous VNF of the

same VNF-chain request s was placed, is assigned to na (line 9). If no node

has sufficient resources and accelerator of type atype(fs) instantiated on

it, a node with the highest CPU utilization is then selected from Na (line

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 67

Algorithm 2.1: Accelerator-agnostic VNF-PC procedure.

1 Procedure AgPlaceChain(NodesSet, α, β, γ, (Fs,Ls)):
2 tries, plc, np ← 0,True, φ
3 while tries ≤MAX TRIES do

4 for Nodes in NodesSet do
5 α0, β0, Nodes0 ← α, β,Nodes
6 for fs in Fs do

7 if np == φ or
(

cpu0(f
s)
)

> Rcpu(np)
)

then

8 N = {n : ∀n ∈ Nodes,Rcpu(n) ≥ (cpu0(f
s)}

9 if N == φ then

10 plc← False

11 break

12 else

13 np ← Random(N)

14 if AccelVNF(fs, np, node accels, ts) == False then

15 Rcpu(np)← Rcpu(np)− cpu0(f
s)

16 else

17 β[fs]← np

18 α[fs]← np

19 if ChainVNFs(α, γ, Ls, G) == False or plc == False then

20 α, β,Nodes← α0, β0, Nodes0
21 else

22 return True

23 tries← tries+ 1

24 end

Algorithm 2.2: Main service-chain allocation procedure.

1 Procedure AllocateChain(G,Nc, racks, cluster,Gs, α, β, γ):
2 for NodesSet in

{

{{n} : n ∈ Nc
}

, racks, clusters} do
3 if AgPlaceChain(NodesSet, α, β, γ,Gs) then

4 break

5 end

68 Chapter 2

Algorithm 2.3: VNF acceleration procedure

1 Procedure AccelVNF(fs, np, node accels, ts):
2 if atype(fs) /∈ A or Rcpu(np) <

(

cpu0(f
s)− cpur(f

s)
)

or

Rpci(np) < 2ts then

3 return False

4 else

5 if atype(fs) /∈ node accels[np] then
6 if r(atype(fs)) > Racc(np) then
7 return False

8 else

9 Racc ← Racc − r(atype(fs))

10 node accels[n]← node accels[n] ∪ {atype(fs)}

11 Rcpu(n)← Rcpu(n)−
(

cpu0(f
s)− cpur(f

s)
)

12 Rbus(n)← Rbus(n)− 2ts
13 return True

14 end

Algorithm 2.4: VNF chaining procedure

1 Procedure ChainVNFs(α, γ, Ls, G):

2 G0(N0, E0)← G(N,E)
3 γ0 ← γ
4 for (fs

k ,f
s
k+1) in Ls do

5 done← False

6 if α[fs
k] ̸= α[fs

k+1] then
7 P ← ShortestPaths(G, α[fs

k], α[f
s
k+1])*

8 for p in P do

9 if bw(p) >= ts* then

10 for (ni, nj) in p do

11 b(ni, nj)← b(ni, nj)− ts*
12 Rbus(ni)← Rbus(ni) - 2ts
13 γ[fs

k , f
s
k+1]← (ni, nj)

14 done← True

15 break

16 if done == False then

17 G(N,E)← G0(N0, E0)
18 γ ← γ0
19 return False

20 return True

21 end

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 69

11). Using the procedure AccelVNF (Alg. 2.3), placement and accelerator

allocation for VNF fs is attempted on na (line 12).

In Alg. 2.6, each server node used in the previous step is iterated over for the

complete mapping of the remaining VNF-chain segments (lines 4-20). The

unmapped segments of all service requests are identified for which at least

one adjacent VNF is placed on node n (lines 5-8). An attempt is then made

to map each segment seg in Sn
seg with as much proximity to n as possible.

The process followed for the mapping of each VNF-FG segment ∀seg ∈ Sn
seg

is similar to the one followed in the accelerator-agnostic VNF-PC heuristic

(Alg. 2.2). The mapping is attempted first on the nodel level, then on

the rack level containing node and at last on the whole cluster level us-

ing the procedure AgPlaceChain (line 13). In addition, newly placed VNF

segment seg and its adjacent VNFs, which were previously placed using

PlaceAccelVNFs, are linked via procedure ChainVNFs (line 18).

At last, VNF-chain requests which haven’t been yet mapped to NFVi are

identified (line 21). Set SR contains all those VNF-chain requests s ∈ S

which either (i) do not have any VNF with an accelerator implementation

available in A or (ii) enough resources were not available to allocate acceler-

ator to VNFs during the first step (line 2). Mapping of all service requests

in SR is attempted in a hierarchical way (lines 22-25) discussed in Alg. 2.2.

Again, consider the deployment of two VNF-chains (s1 : f11 → f12 → f13 →

f14, s2 : f21 → f22 → f23) on the same NFVi topology as shown in Fig. 2.7.

In accelerator-aware PC heuristic, accelerate-able VNFs of two VNF-chains

are placed in the first phase, so f12 is placed on the first server node of rack0

which has an attached hardware accelerator card. In the second phase, the

heuristic loops over the server nodes which have VNFs placed on them, while

determining and placing the remaining segments of VNF-chains. Therefore,

deployment of the VNF-chain segment f11 and f13 → f14 is then attempted

using the same procedure as discussed in accelerator-agnostic heuristic. Af-

ter the successful deployment of VNF-chain segments of s1, two segments

f11, f13 → f14 are chained to the VNF f12 via ChainVNFs procedure. At

last, the second VNF-chain (no accelerate-able VNFs) s2 is then deployed

in rack1 using the same procedure as followed in the accelerator-agnostic

heuristic. It can be observed that the accelerator-aware VNF-PC heuristic

results in using one less server node as compared to the accelerator-agnostic

heuristic for the deployment of VNF-chains s1 and s2.

70 Chapter 2

Algorithm 2.5: Placement procedure for accelerate-able VNFs.

1 Procedure PlaceAccelVNFs(α, β, γ, node accels, S):
2 Na ← {n ∈ Nc : Racc(n) > 0}
3 for s in S do

4 F s
acc ← {f

s ∈ Fs : atype(fs) ∈ A}
5 for fs in Facc do

6 Nfs ← {n ∈ Nc : atype(fs) ∈ node accels[n], 2ts <
Rbus,

(

cpu0(f
s)− cpur(f

s)
)

< Rcpu(n)}
7 if Nfs ̸= φ then

8 np ← select node from Nfs where previous VNF of the
service chain s was placed

9 na ← argmin
n

PathLen(n, np)

10 else

11 na ← select a node from Na with sufficient resources

12 if AccelVNF(fs, na, node accels, ts) then

13 α[fs], β[fs]← na, na

14 used nodes← all used nodes in N
15 return used nodes

16 end

rack 0

f
21

f
22

f
23

2 3 3

ACC

rack 1 rack 2

2

f
11

f
12

f
13

3

f
14

4 2 3

Physical machine (5

CPU cores)

Physical link

VNF placement

ACC Available accelerator

Virtual link

Figure 2.7: Illustration showing placement and chaining in accelerator-aware
VNF-PC heuristic on the leaf-spine topology.

2.7 Performance evaluation

The objective of this section is to assess the scalability and efficiency of

the ILP model and VNF-PC heuristics using simulation experiments. We

first describe the simulation environment used in our evaluation and then

present the obtained results after performing experiments on the ILP model

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 71

Algorithm 2.6: Accelerator-aware VNF-PC procedure.

1 Procedure AccelAwarePlaceChain(α, β, γ, S):
2 used nodes← PlaceAccelVNFs(α, β, S)
3 Sp

seg ← {}
4 for n in used nodes do

5 node chains ← {s ∈ S : ∃fs ∈ Fs placed on node}
6 Sn

seg ← {}
7 for chain in node chains do

8 Sn
seg ← Sn

seg∪ {all possible chain segments in chain};

/* place remaining segments of chains */

9 for seg in Sn
seg do

10 Gseg ← VNF forwarding sub-graph corresponding to seg
11 if seg ̸⊂ Sp

seg then

12 for NodesSet in {{node}, rack node, cluster node} do
13 if AgPlaceChain({NodesSet}, α, β, γ, Gseg) then

14 fseg

l ← leftmost VNF of seg
15 facc

l ← VNF which needs to be linked with the
leftmost VNF of seg

16 fseg
r ← rightmost VNF of seg

17 facc
r ← VNF which needs to be linked with the
rightmost VNF of seg

18 if ChainVNFs(α, γ, {(facc
l , fseg

l)}, G) and

ChainVNFs(α, γ, {(fseg
r , facc

r)}, G) then

19 Sp
seg ← Sp

seg ∪ {seg}
20 break

21 SR ← S \ {s ∈ S : α[fs] ̸= φ, ∀fs ∈ Fs}
/* placement and chaining of remaining service-chains */

22 for s in SR do

23 for NodesSet in
{

{{n} : n ∈ Nc
}

, racks, clusters} do
24 if AgPlaceChain(NodesSet, α, β, γ,Gs) then

25 break

26 end

and heuristics.

2.7.1 Setup and Parameters

The ILP model for the VNF-AAPC problem has been built using the

Python API of IBM’s ILOG CPLEX called DOcplex (Decision Optimiza-

tion CPLEX Modeling). DOcplex provides a user-friendly API to write the

ILP model which is then solved by the CPLEX solver. All heuristic algo-

rithms are written in the Python programming language. We used an Intel

72 Chapter 2

Table 2.3: Default values/range of various parameters involved in simulation
experiments.

Parameter Value or range Parameter Value or range
| S | [5, 250] co(f

c) 3-5 (cores)
Rcpu(n) 24 (cores) ci(f

c) (0.40 - 0.60)co(f
c)

Racc(n) 0,100k (LUTs) ρvnfacc , ρ
n
acc 0.20, 0.30

Rbus(n) 80 (Gbps) b(ni, nj) 10, 40 (Gbps)
VNF-chain length 4-6 accel. type (a) a1 a2 a3

ts 100-500 (Mbps) r(a) (LUTs) 40k 28k 30k
cn 1, 1.20

Xeon server machine with quad-core CPU @ 2.40GHz with 16GB of RAM

memory running Ubuntu-16.04 OS to carry out evaluations of the ILP and

heuristics. Each data point reported in the evaluations indicates an average

over 10 iterations along with the corresponding confidence interval of one

standard deviation (68%).

For evaluation of heuristics, we have considered two different DC topologies

for simulating the physical network: (i) three-tier and (ii) leaf-spine. For the

three-tier topology, we vary the value of k to adjust the size of the network.

For example, when k=6 we will have k=6 pods, each pod containing k/2 =3

access switches and k/2 = 3 aggregate switches. Each access switch (ToR

switch) is connected to 6/2=3 server nodes and therefore the total number

of server nodes in all the pods is equal to 54. For the leaf spine topology,

we have considered 4 core switches and 16 leaf switches (ToR switch). Each

leaf switch is connected to 16 server nodes, therefore, resulting in a total of

320 server nodes. In both the topologies, the links connecting server nodes

with ToR switches are 10Gbps, whereas the links connecting switches are

40Gbps.

Each server node has 24 CPU cores, 16GB/s of PCIe bandwidth, and has

100k LUTs if a hardware accelerator card is attached to the server node.

For simplicity we assume the cost cn of a server node to be 1.20$ if it is

attached with a hardware accelerator, otherwise 1$. The fraction of VNFs

which are accelerate-able (ρvnfacc) and the fraction of server nodes attached

with hardware accelerator (ρnacc) are set to 0.20 and 0.30, respectively, before

generating VNF-chains for the simulation. The other parameters considered

in evaluations are given in Table 2.3.

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 73

spine layer

leaf layer

server

layer

Figure 2.8: Leaf-spine topology used for the evaluation of the ILP approach and
the heuristic.

ILP Heuristic
0

20

40

60

80

Ex
ec

uti
on

 tim
e(s

)

10.04

0.05

0.06

0.07

0.08

Figure 2.9: Comparison of the ILP model and the heuristic in terms of total
execution times for the leaf-spine topology.

74 Chapter 2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (hours)

10.8
11.0
11.2
11.4
11.6
11.8
12.0
12.2
12.4

To
ta

l n
od

e
co

st

ILP inc. solution
ILP lower bound

Figure 2.10: Evolution of ILP’s incumbent solution and lower-bound for the full
execution of CPLEX.

5 10 15 20
Total Chains

0

5

10

15

No
de

s C
os

t

ILP-LB
ILP
Heuristic

Figure 2.11: Comparison of ILP model and heuristic in terms of total node costs
in the leaf-spine topology for different number of VNF-chains.

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 75

2.7.1.1 Comparison of ILP and Heuristic

Before presenting evaluation results regarding total node costs, we first re-

port total execution times for the ILP and heuristic approach. Fig. 2.9

shows the distribution of total execution times for both approaches when

deploying 5 VNF-chains on a leaf-spine topology shown in Fig. 2.8. As

expected, it can be observed that the execution time of the ILP approach

is orders of magnitude larger than the heuristic approach. Moreover, when

the number of VNF-chains to be deployed on the given topology becomes

large | S |≥ 15 the total execution time could reach up to several hours.

Fig. 2.10 shows the evolution of CPLEX solutions with time for the de-

ployment of 15 VNF-chains. It can be observed that CPLEX takes about 2

hours to complete the execution for this instance, yet the gap between the

incumbent solution and the lower-bound estimated by CPLEX after one

hour is negligible (0.5%). Nevertheless, only small sizes instances of the

VNF-AAPC problem can be solved using the ILP approach in a reasonable

time.

Fig. 2.11 gives the comparison between ILP and heuristic in terms of to-

tal nodes cost for the deployment of different numbers of VNF-chains for a

given NFVi. Here we have limited the maximum execution time of CPEX

instances to one hour. The bar chart shows (i) ILP incumbent solution

(ILP) and (ii) best lower-bound (ILP-LB) estimated by CPLEX until one

hour and (iii) VNF-AAPC heuristic solution. We can observe that there

exists a small penalty (on average ∼5%) when using the heuristic approach

instead of the ILP approach. As mentioned earlier, the gap between ILP-LB

and ILP is almost negligible after one hour of CPLEX execution time.

For the deployment of 20 VNF chains, we can observe that the cost of

the total nodes using the ILP approach is higher than with the heuristic

method. As the total time of execution is limited, CPLEX was not able to

reach the optimal solution in the given time and the VNF-AAPC heuristic

method is able to achieve more efficient allocation than the ILP approach.

Although CPLEX can find the optimal solution if allowed to run without

any time limitation, the performance of the heuristic is still very close to

the estimated lower bound by CPLEX. As mentioned earlier, it will be im-

practicable to use ILP to solve problem instances of a size larger than 15

VNF-chains.

2.7.1.2 VNF-PC Heuristic Comparison

Here, we compare the performance of heuristic algorithms among them-

selves in terms of the three performance metrics. The following metrics

were evaluated when deploying a given set of VNF-chains on a fixed NFVi

76 Chapter 2

infrastructure with sufficient resources.

1. First, the total node cost is the cost of using (switching-on) server

nodes, which also includes additional costs due to the installation of

hardware accelerators in a subset of server nodes. The comparison of

node costs will indicate the resulting cost saving in NFVi by using a

particular VNF-PC scheme.

2. Second, β/α is the ratio of total VNFs allocated hardware accelerators

to the total VNFs in all VNF-chains. It is possible that the VNF-PC

algorithm might not allocate an accelerator to an accelerate-able VNF.

This metric shows the efficiency of the VNF-PC algorithm in terms

of the utilization of hardware accelerator resources. A higher value of

β/α indicates efficient allocation of hardware accelerator resources by

the VNF-PC algorithm.

3. Third, CPUrem is the average amount of CPU cores remaining per

server node left unallocated after the completion of VNF-PC. A high

CPUrem indicates the poor consolidation of VNFs, thereby resulting

in overall inefficient allocation of resources.

To benchmark the performance of the proposed VNF-AAPC heuristic, we

also evaluate the performance of the accelerator-agnostic VNF-PC heuris-

tic. The accelerator-agnostic VNF-PC heuristic will serve as the baseline

for the evaluation of our VNF-AAPC heuristic.

Fig. 2.12 (a) and (d) show the total node costs incurred to the opera-

tor as a result of the deployment of different numbers of VNF-chains on

three-tier and leaf-spine DC topologies, respectively. In both topologies,

the results show the lowest resource cost in the case of accelerator-aware

VNF-PC heuristic. This arises from the efficient consolidation of VNFs, as

explained below, by the accelerator-aware heuristic in contrast to the poor

VNF consolidation in accelerator-agnostic heuristic.

For the accelerator-agnostic VNF-PC, the VNF placement process is un-

aware of the presence of accelerator resources on a server node. The chance

of an accelerator being allocated to a VNF depends on the odds of an

accelerate-able VNF being placed on a server node with a hardware ac-

celerator. The probability (pacc) of allocation of an accelerator to a VNF

using the accelerator-agnostic VNF-PC heuristic is thus given by the prod-

uct pacc = ρvnfacc ρ
n
acc. Here, ρvnfacc is the fraction of VNF that can be offloaded

using a hardware accelerator (accelerate-able VNFs) and ρnacc is the frac-

tion of server nodes attached with a hardware accelerator. Therefore, pacc
gives odds of accelerator allocation to a VNF with the accelerator-agnostic

heuristic. This can also be verified from the resulting β/α ratios depicted in

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 77

Fig. 2.12 (b) and (e). The β/α ratio for the accelerator-agnostic heuristic

remains smaller than the accelerator-aware heuristic for any value of to-

tal VNF-chains. The explicit allocation of accelerators to VNFs occurs in

the accelerator-aware heuristic leading to a superior probability of acceler-

ator allocation pacc ≈ ρvnfacc ; which is in contrast to the accelerator-agnostic

heuristic where accelerator-allocation is arbitrary. Moreover, we observed

an increase in β/α ratio with the increasing number of total VNF-chains.

This observation can be attributed to the fact that the accelerator-aware

heuristic attempts to reuse the deployed accelerator instances and nodes

attached with hardware accelerators. Therefore, increasing the number of

VNF-chains causes an increase in the number of candidates for accelerator

allocation; thus resulting in a better β/α ratio.

CPUrem metrics for both heuristics are depicted in Fig. 2.12 (c) and

(f). VNF consolidation on server nodes tends to increase with the total

number of VNF chains as the chance of placing VNF on a server node will

increase with the increase in the total number of VNFs. This is confirmed

by the decreasing CPUrem with the increasing number of VNF-chains for

both topologies. Moreover, as more VNFs are granted accelerator using the

accelerator-aware heuristic compared to the accelerator-agnostic heuristic,

the corresponding CPUrem is smaller and therefore more VNF consolida-

tion is achieved.

We also try to show the impact of changing the fraction of nodes ρnacc with

an attached hardware accelerator card on overall performance metrics; when

deploying the same set of VNF-chains. For this experiment, we decreased

the fraction of server nodes attached with a hardware accelerator in the

three-tier topology with k = 10 and measured the performance metrics for

both heuristics. It can be observed from Fig. 2.13 that the total nodes cost

for accelerator-aware heuristic remains less than that of the accelerator-

agnostic heuristic for all values of ρnacc. Also, as the fraction of nodes with

hardware accelerator ρnacc is reduced, the additional accelerator cost is de-

creased for both accelerator-agnostic and accelerator-aware VNF-PC heuris-

tics which is negated by the additional costs due to the requirement of extra

server nodes.

As expected, β/α ratio decreases with decreasing ρnacc for both accelerator-

agnostic and accelerator-aware heuristics. The β/α ratio decreases almost

linearly with the decrease in ρnacc. This, again, arises from the fact that the

probability of accelerator allocation in the accelerator-agnostic heuristic is

directly proportional to ρnacc value which is not the case with the accelerator-

aware heuristic. As placement decisions for accelerate-able VNFs are sepa-

rate in accelerator-aware VNF-PC heuristic, there is no drastic impact on

its β/α ratio with a decrease in ρnacc value.

78 Chapter 2

There isn’t any significant change in CPUrem for both heuristics with the

change in ρnacc values. However, VNF consolidation for accelerator-aware

heuristic is better than the accelerator-agnostic heuristic, as was expected.

50 75 100 125 150 175 200 225 250
Total VNF chains

50

100

150

200

250

T
o
ta

l n
o
d
e
 c

o
st

(a)

accel-agnostic
accel-aware

50 75 100 125 150 175 200 225 250
Total VNF chains

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225
/

 r
a
ti

o

(b)

accel-agnostic
accel-aware

50 75 100 125 150 175 200 225 250
Total VNF chains

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

C
P
U
re
m

(%
)

(c)

accel-agnostic
accel-aware

50 75 100 125 150 175 200 225 250
Total VNF chains

50

100

150

200

250

T
o
ta

l n
o
d
e
 c

o
st

(d)

accel-agnostic
accel-aware

50 75 100 125 150 175 200 225 250
Total VNF chains

0.050

0.075

0.100

0.125

0.150

0.175

0.200

/
 r

a
ti

o

(e)

accel-agnostic
accel-aware

50 75 100 125 150 175 200 225 250
Total VNF chains

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

C
P
U
re
m

(%
)

(f)

accel-agnostic
accel-aware

Figure 2.12: Comparison of accelerator-agnostic and accelerator-aware heuristics
in terms of total node costs, β/α ratio and CPUrem for the three-tier and

leaf-spine topologies. Plots for the three-tier topology are shown in (a), (b) and
(c) and plots in (d), (e) and (f) correspond to the leaf-spine topology.

2.7.2 Overall cost analysis

In this section, we analyze the cost-saving achieved as a result of incorporat-

ing hardware acceleration in NFVi. We assume the total number of server

nodes (without any hardware accelerator) required for the deployment of a

given set of VNF-chains is N . The total cost Cost0 incurred to the operator

as a result of running server nodes can be expressed as follows:

Cost0 = Nc0 (2.14)

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 79

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Fractional accel. nodes

100

110

120

130

140

150

To
tal

 no
de

 co
st

(a)

accel-agnostic
accel-aware

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Fractional accel. nodes

0.05

0.10

0.15

0.20

/

(b)

accel-agnostic
accel-aware

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Fractional accel. nodes

5.0

7.5

10.0

12.5

15.0

17.5

20.0

CP
U r

em
(%

)

(c)

accel-agnostic
accel-aware

Figure 2.13: Impact of fraction of nodes with accelerator ρnacc on (a) the total
number of required nodes, β/α ratio and CPUrem for the deployment of 100
VNF-chains on the three-tier topology (k = 10) using accelerator-agnostic and

accelerator-aware VNF-PC heuristics.

80 Chapter 2

Here, c0 is the cost of running a single server node (without hardware ac-

celerator) and N is the total number of server nodes required for the de-

ployment of a set of VNF-chains.

After the installation of hardware accelerators in server nodes, the total cost

of deployment Costacc for the same set of VNF-chains can be expressed as

follows:

Costacc = (1 + cacc)c0N(1− ρred)ρ
n
acc + c0N(1− ρred)(1− ρnacc) (2.15)

The first term and the second term of eq. 2.15 refer to the cost of using

server nodes attached with and without hardware accelerators, respectively.

cacc is the additional cost of installation of hardware accelerator in a server

node relative to the original server node cost, ρnacc is the fraction of server

nodes that are installed with a hardware accelerator and ρred is the relative

(total number of server nodes) reduction in the number of server nodes after

hardware-acceleration for VNFs.

Fig. 2.14 compares the total server nodes required for the deployment of

100 VNF-chains on a leaf-spine topology in two cases, (i) when server nodes

are not attached with any hardware accelerator card and (ii) when server

nodes are attached with a hardware accelerator card. We have used the

accelerator-agnostic heuristic for the case when NFVi does not contain any

hardware accelerators and for the case when NFVi contains hardware ac-

celerators, we have used the accelerator-aware heuristic. It can be observed

that the relative reduction ρred in the total number of server nodes by using

hardware accelerators is 18-20%.

No HA HA0

20

40

60

80

100

To
ta

l n
od

es
 u

se
d

Figure 2.14: Total server nodes required for the deployment of 100 VNF-chains
on a leaf-spine topology in two cases, (i) when server nodes are not attached with

any hardware accelerator card and (ii) when sever-nodes are attached with a
hardware accelerator card.

Relative cost savings (G) is the relative reduction in the total cost as a

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 81

result of using hardware acceleration in NFVi. G can be obtained by using

the expression shown below:

G = (Cost0 − Costacc)/Cost0 = 1− (1− ρred).
(

1− ρnacc + (1 + cacc).ρ
n
acc

)

(2.16)

Eq. 2.16 gives an expression for the achievable cost-saving in terms of rela-

tive server node reduction ρred and additional costs of hardware accelerators

(cacc). Using eq. 2.16, we can plot the required minimum ρred to achieve

a given cost-saving G as shown in Fig. 2.15. Fig. 2.15 shows four dif-

ferent contours corresponding to four different G values. For example, to

achieve an overall 15% savings (G = 0.15) on server nodes cost, the VNF-

PC algorithm should achieve at least 18% reduction of total server nodes,

when an additional cost of 18.5% is needed for the installation of hardware

accelerators. As expected, one can observe that higher G values require

high server node reduction ρred and low additional costs cacc. Therefore,

efficient accelerator-aware VNF-PC heuristics are required to gain the ben-

efits of hardware accelerators even when their cost is expected to fall in the

future. As stated earlier, about ρred = 18 − 20% reduction in total server

nodes can be obtained using our VNF-AAPC heuristic. As a result, about

15% of overall cost-saving (G) is achievable by the operator.

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
cacc

0.125

0.150

0.175

0.200

0.225

0.250

0.275

re
d

(0.185, 0.18)

G=0.10
G=0.15
G=0.20
G=0.25

Figure 2.15: Variation of relative node reduction ρred with respect to additional
hardware accelerator cost for VNF-PC heuristic’s. Each line represent a locus of

all points with fixed value of cost-saving G.

82 Chapter 2

2.8 Conclusion

NFVi generally includes all hardware and software components required to

build a virtualized environment for running VNFs. However, due to specific

performance or energy goals, it becomes essential to provide some kind of

acceleration to certain VNFs. However, the current NFVi resource alloca-

tion models do not consider hardware accelerator resources while performing

placement and chaining of VNFs; therefore, resulting in inefficient utiliza-

tion of NFVi resources.

In this paper, we modeled the VNF-AAPC problem for NFV environments

containing hardware accelerators along with the usual NFVi resources. To

tackle the VNF-AAPC problem, we proposed two approaches: (i) the ILP

method and (ii) the heuristic algorithm. As opposed to the ILP-approach,

the heuristic-based method is able to scale with the problem size at the cost

of a small penalty. Both approaches aim at minimizing the cost incurred to

the operator due to the utilization of resources for the deployment of VNF-

chains. The heuristic-based approach performs tasks of VNF placement and

chaining in two different phases: (i) the Placement of accelerate-able VNFs,

(ii) the Placement and Chaining of remaining VNF-chain segments. The

proposed methods were also evaluated using simulation experiments and

then were compared in terms of their resulting cost and other performance

metrics. The simulation results indicate that the accelerator-aware heuristic

approach can achieve 12-14% cost savings as compared to the accelerator-

agnostic heuristic. Finally, we also performed an overall cost analysis on the

use of hardware accelerators in NFV environments. The analysis shows that

the proposed accelerator-aware VNF-PC heuristic could be used to achieve

significant cost savings when using hardware accelerators in NFVi.

Hardware accelerators are not only utilized in cloud DCs for performance

enhancements of VNFs but also in other scenarios e.g. network edges, Cen-

tralized Radio Access Networks (CRANs). To reduce energy costs and meet

the strict performance requirements in CRAN, various techniques to offload

baseband processing functions, e.g. iFFT/FFT, turbo-coding, using hard-

ware accelerators are being investigated. However, the problem of modeling

resource dimensioning for virtual base stations in cloud RANs (C-RAN)

architectures with hardware accelerators still remains to be investigated.

2.9 Acknowledgments

This work was funded through NGPaaS, under the grant number 761557, in

the scope of the European Commission Horizon 2020 and 5G-PPP programs.

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 83

References

[1] B. Yi, X. Wang, K. Li, M. Huang, et al. A comprehensive survey

of network function virtualization. Computer Networks, 133:212–262,

2018.

[2] Architectural Framework, 2013. Online; Release v1.1.1 2013-10. Avail-

able from: https://www.etsi.org/deliver/etsi gs/nfv/001 099/002/01.

01.01 60/gs nfv002v010101p.pdf.

[3] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zin-

ner, R. Bifulco, M. Jarschel, and G. Bianchi. Survey of Performance

Acceleration Techniques for Network Function Virtualization. Proceed-

ings of the IEEE, 107(4):746–764, 2019.

[4] N. Nikaein. Processing radio access network functions in the cloud:

Critical issues and modeling. In Proceedings of the 6th International

Workshop on Mobile Cloud Computing and Services, pages 36–43.

ACM, 2015.

[5] Acceleration Technologies; Report on Management Aspects Spec-

ification, 2015. Online; Release v2.4.1 2018-02. Available

from: https://www.etsi.org/deliver/etsi gs/NFV-IFA/001 099/004/

02.04.01 60/gs NFV-IFA004v020401p.pdf.

[6] J. G. Herrera and J. F. Botero. Resource allocation in NFV: A com-

prehensive survey. IEEE Transactions on Network and Service Man-

agement, 13(3):518–532, 2016.

[7] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function vir-

tualization: Challenges and opportunities for innovations. IEEE Com-

munications Magazine, 53(2):90–97, 2015.

[8] S. Gebert, A. Müssig, S. Lange, T. Zinner, N. Gray, and P. Tran-Gia.

Processing time comparison of a hardware-based firewall and its vir-

tualized counterpart. In International Conference on Mobile Networks

and Management, pages 220–228. Springer, 2016.

[9] Addressing 5G Network Function Requirements. White Paper, 2018.

Online.

[10] G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet. Dynamic

Hardware-Acceleration of VNFs in NFV Environments. In 2019 Sixth

International Conference on Software Defined Systems (SDS), pages

254–259, June 2019. doi:10.1109/SDS.2019.8768671.

https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/004/02.04.01_60/gs_NFV-IFA004v020401p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/004/02.04.01_60/gs_NFV-IFA004v020401p.pdf

84 Chapter 2

[11] Z. Martinasek, J. Hajny, D. Smekal, L. Malina, D. Matousek,

M. Kekely, and N. Mentens. 200 Gbps Hardware Accelerated Encryp-

tion System for FPGA Network Cards. In Proceedings of the 2018

Workshop on Attacks and Solutions in Hardware Security, pages 11–

17. ACM, 2018.

[12] X. Li, X. Wang, F. Liu, and H. Xu. DHL: Enabling flexible software

network functions with FPGA acceleration. In 2018 IEEE 38th Interna-

tional Conference on Distributed Computing Systems (ICDCS), pages

1–11. IEEE, 2018.

[13] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and

X. Hu. OpenANFV: Accelerating Network Function Virtualization with

a Consolidated Framework in Openstack. In ACM SIGCOMM Com-

puter Communication Review, volume 44, pages 353–354. ACM, 2014.

[14] A. Albanese, P. S. Crosta, C. Meani, and P. Paglierani. Gpu-accelerated

video transcoding unit for multi-access edge computing scenarios. In

Proceeding of ICN, 2017.

[15] M. Masoudi, M. G. Khafagy, A. Conte, A. El-Amine, B. Françoise,

C. Nadjahi, F. E. Salem, W. Labidi, A. Süral, A. Gati, et al. Green

Mobile Networks for 5G and Beyond. IEEE Access, 7:107270–107299,

2019.

[16] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a GPU-

accelerated software router. ACM SIGCOMM Computer Communi-

cation Review, 41(4):195–206, 2011.

[17] X. Yi, J. Duan, and C. Wu. Gpunfv: a gpu-accelerated nfv system. In

Proceedings of the First Asia-Pacific Workshop on Networking, pages

85–91, 2017.

[18] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,

and E. Chen. Clicknp: Highly flexible and high performance network

processing with reconfigurable hardware. In Proceedings of the 2016

ACM SIGCOMM Conference, pages 1–14. ACM, 2016.

[19] Z. Bronstein, E. Roch, J. Xia, and A. Molkho. Uniform handling and

abstraction of NFV hardware accelerators. IEEE Network, 29(3):22–29,

2015.

[20] Y. Watanabe, Y. Kobayashi, T. Takenaka, T. Hosomi, and Y. Naka-

mura. Accelerating NFV application using CPU-FPGA tightly coupled

architecture. In 2017 International Conference on Field Programmable

Technology (ICFPT), pages 136–143. IEEE, 2017.

VNF-AAPC: Accelerator-aware VNF Placement and Chaining 85

[21] Acceleration Technologies; Report on Acceleration Technologies &

Use Cases, 2015. Online; Release v1.1.1 2015-12. Avail-

able from: https://www.etsi.org/deliver/etsi gs/nfv-ifa/001 099/001/

01.01.01 60/gs nfv-ifa001v010101p.pdf.

[22] H. Moens and F. De Turck. VNF-P: A model for efficient placement

of virtualized network functions. In 10th International Conference on

Network and Service Management (CNSM) and Workshop, pages 418–

423. IEEE, 2014.

[23] S. Mehraghdam, M. Keller, and H. Karl. Specifying and placing

chains of virtual network functions. In 2014 IEEE 3rd International

Conference on Cloud Networking (CloudNet), pages 7–13, Oct 2014.

doi:10.1109/CloudNet.2014.6968961.

[24] B. Addis, D. Belabed, M. Bouet, and S. Secci. Virtual network func-

tions placement and routing optimization. In 2015 IEEE 4th Interna-

tional Conference on Cloud Networking (CloudNet), pages 171–177.

IEEE, 2015.

[25] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and

R. Boutaba. Elastic virtual network function placement. In 2015 IEEE

4th International Conference on Cloud Networking (CloudNet), pages

255–260. IEEE, 2015.

[26] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet,

and P. Demeester. Network service chaining with optimized network

function embedding supporting service decompositions. Computer Net-

works, 93:492–505, 2015.

[27] F. Carpio, S. Dhahri, and A. Jukan. VNF placement with replication

for load balancing in NFV networks. In 2017 IEEE International Con-

ference on Communications (ICC), pages 1–6. IEEE, 2017.

[28] H. Fan, Y. Hu, S. Zhang, and Q. Ren. Hardware Acceleration Resource

Allocation Mechanism for VNF. Procedia computer science, 131:746–

755, 2018.

[29] S. Dräxler and H. Karl. SPRING: Scaling, Placement, and Routing of

Heterogeneous Services with Flexible Structures. In 2019 IEEE Confer-

ence on Network Softwarization (NetSoft), pages 115–123, June 2019.

doi:10.1109/NETSOFT.2019.8806700.

[30] G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet. VNF-AAP:

Accelerator-aware Virtual Network Function Placement. 2019.

https://www.etsi.org/deliver/etsi_gs/nfv-ifa/001_099/001/01.01.01_60/gs_nfv-ifa001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-ifa/001_099/001/01.01.01_60/gs_nfv-ifa001v010101p.pdf

86 Chapter 2

[31] N. Kodirov, S. Bayless, F. Ruffy, I. Beschastnikh, H. H. Hoos, and A. J.

Hu. VNF chain allocation and management at data center scale. In

Proceedings of the 2018 Symposium on Architectures for Networking

and Communications Systems, pages 125–140. ACM, 2018.

3
On Decomposition and Deployment of

Virtualized Media Services

In telecom industry, NFV aims to replace network middleboxes with low-

cost COTS hardware that is used to host VNFs. Similarly, MFV proposes

to transition from the architecture where media transport and processing is

based on specialized hardware towards the architecture based on COTS hard-

ware. MFV shall potentially help broadcasters to reduce their expenditures

as it is happening with NFV. In Chapter 2, we addressed the resource al-

location problem for network services in the context of NFV. However, due

to some peculiarities of media services vis-a-vis network services, additional

opportunities can be exploited that are not obvious with network services.

The advantage of decomposing media streams and VMFs can be utilized for

the optimization of a media service’s VMF-FG.

In this chapter, a VMF-FG decomposition algorithm is proposed that opti-

mizes a given media service prior to its deployment. For VMF-FG deploy-

ment, we present two VMF-PC heuristics: NFPC and k-cutPC. In compar-

ison to NFPC, which is inspired from the heuristic presented in Chapter 2,

the k-cutPC heuristic is suitable for the deployment of media services.

⋆ ⋆ ⋆

G.P. Sharma, D. Colle, W. Tavernier, and M. Pickavet

88 Chapter 3

Published in the IEEE Transactions on Broadcasting, vol. 67, no.

3, pp. 761–775, 2021.

3.1 Abstract

For decades, broadcasters have heavily relied on specialized hardware ap-

pliances for media transport and processing. However, new architectures,

where media transport is realized using IP networking and general-purpose

compute hardware is used to run Virtual Media Functions (VMFs), are in-

creasingly being adopted in the broadcast industry. To truly exploit the

benefits of these architectures, efficient resource allocation algorithms are

needed. Hence, we have proposed an algorithm to optimize a media ser-

vice’s VMF Forwarding Graph (VMF-FG) prior to deployment. To deploy

media services, two VMF Placement and Chaining (VMF-PC) algorithms–

Next-Fit Placement and Chaining (NFPC) and k-cut Placement and Chain-

ing (k-cutPC) are proposed. The presented evaluation results compare the

performance of the two VMF-PC algorithms along with highlighting the

improvement in resource allocation as a result of VMF-FG decomposition.

3.2 Introduction

Today’s TV broadcasters are facing multiple challenges. On the one hand,

due to the severe competition in the broadcast industry, the revenue gen-

erated through the users has not increased substantially and on the other

hand, the user demand for high-quality formats has risen [1]. To match

the increase in demand, broadcasters are forced to regularly upgrade their

infrastructure that consists of specialized media transport and processing

hardware; this leads to a substantial increase in the total expenditures.

Moreover, these appliances offer no to a little flexibility, e.g., configuring a

hardware appliance to process high-quality media. As a result, broadcast-

ers are seeking economical and flexible architectures to produce high-quality

broadcast content.

Internet protocol (IP) has been a de facto standard to interconnect devices

within the Internet and also for many other computer networks. Broadcast

studios are also witnessing the adoption of IP technology, albeit for a frac-

tion of the total workloads. In addition to that, media processing based

on Commercial Off-the-Shelf (COTS) compute platforms are expected to

become common in the foreseeable future [2]. The BBC and Grassvalley

have already demonstrated the feasibility of general-purpose compute for

broadcast applications [3, 4]. To summarize, studio architectures are being

On Decomposition and Deployment of Virtualized Media Services 89

explored where media transport is based on IP networking and a general-

purpose compute platform is utilized to realize media processing because of

two main advantages– (i) cost reduction due to the replacement of costly

hardware appliances with general-purpose platforms and (ii) increased flex-

ibility in terms of media service deployment, upgrade and management [1].

Prior to the TV broadcast industry, the telecom industry witnessed a simi-

lar transition from proprietary hardware appliances to general-purpose plat-

forms running packet processing functionality in the form of Virtual Net-

work Functions (VNFs). This new architecture that realizes network ser-

vices using virtualized infrastructures to run VNFs is referred to as Network

Function Virtualization (NFV) [5]. Similar to NFV, Media Function Vir-

tualization (MFV) aims to leverage IT virtualization technologies to realize

media processing functionality. Implementing a complex media service in a

virtual environment involves the processing of several uncompressed media

streams through a network of software-based media processing functions,

which are referred here as Virtual Media Functions (VMFs). The deploy-

ment of network services in virtualized environments has been studied ex-

tensively [5], but that is not true for media service deployments in virtual

environments. Further, due to the real-time nature of media production,

several unique challenges are faced by broadcasters when transitioning to-

wards MFV. Due to these peculiarities of MFV vis-a-vis NFV, media trans-

port and processing using general-purpose platforms need to be studied to

truly exploit the opportunities offered by MFV.

Deployment of a media service in an MFV environment entails a mapping of

the service’s VMF Forwarding Graph (VMF-FG) to the underlying infras-

tructure. The mapping involves an assignment of Virtual Media Functions

(VMFs) to server nodes, along with linking VMFs to allow the flow of me-

dia traffic between them. As VMF-FG mapping influences the amount of

infrastructure required to host media services, it should be performed effi-

ciently. The media traffic between VMFs can be decomposed in multiple

sub-streams, each of which represents a different region of the frame [6].

Further, due to the possibility of software-based processing, the decom-

posed sub-streams can be independently processed using numerous VMFs.

These two opportunities unique to the MFV environment give an opportu-

nity to optimize media service deployment. Specifically, the media service’s

VMF-FG can be decomposed to obtain an optimized VMF-FG that re-

quires less amount of resources when deployed. In our previous work, we

demonstrated the benefits of VMF decomposition for static deployment of

media services [7]. This paper extends that work by proposing a general-

ized VMF-FG decomposition algorithm and two algorithms aimed at media

service deployment.

90 Chapter 3

In concrete terms, the contributions of this paper are as follows:

1. Formally defining the VMF-FG decomposition problem and proposing

a generalized procedure to solve the problem.

2. The design of two algorithms for VMF-FG deployment (i) Next-fit

VMF Placement and Chaining (VMF-PC) and (ii) k-cut VMF-PC.

3. Evaluating the performance of the proposed VMF-PC algorithms with

the varying decomposition of VMF-FGs.

The rest of the paper 1 is structured as follows. In Section 3.3, we deal

with the technical background and related works. The system model, the

problem of VMF-FG decomposition and the procedure to solve this problem

are presented in Section 3.4. Section 3.4 also describes the two VMF-PC

algorithms– NFPC and k-cutPC. The evaluation of the two VMF-PC al-

gorithms and VMF-FG decomposition is presented in Section 3.5. Finally,

Section 3.6 draws the main conclusions along with the potential future re-

search.

3.3 Background and Related Works

The popular usage of IP in the TV broadcast industry is in media distribu-

tion due to the flexibility it offers over the traditional broadcast methods;

IPTV services are deployed over a managed network. Recently, the concept

of Over-the-Top (OTT) media has emerged to provide additional services

such as Video on Demand (VoD) and interactive TV over the internet; these

services were not earlier possible with Cable and Direct-to-home (DTH).

By using techniques like Adaptive Bit Rate (ABR), the quality of media

is adjusted in accordance with the available bandwidth [8]. Furthermore,

there has been an interest to move media workflows to the cloud managed

by service providers (e.g., AWS, GCP). In [9], on-premise and cloud-based

media broadcast scenarios are compared in terms of protocols and used

technologies. The authors have also proposed various hybrid architectures

with different amounts of offloading to the cloud. A proof-of-concept for

SDN/NFV enabled video transcoding has been proposed in [10]. Agility of-

fered with this solution is a key factor to dynamically adapt media quality

with changing network conditions.

1The section in the paper on the MFV architecture is contained in section 1.4.2 of
the introduction chapter.

On Decomposition and Deployment of Virtualized Media Services 91

The objective of this work is to optimize only the media production work-

flows in an on-premise facility. Therefore, we are not concerned here with

the optimization of workflows in media distribution networks.

3.3.1 Media Transport

For decades, broadcasters have employed proprietary baseband technologies

for the purpose of media production. Serial Digital Interface (SDI) is one

such technology popularly utilized for transporting media streams across

broadcast studios [11]. SDI connections are serial data circuits carried over

dedicated coaxial cables with BNC connectors. Different SDI standards

exist that are used to transport uncompressed media streams of different

formats. For example, HD-SDI (SMPTE 292M) interfaces can be used to

transport 720p or 1080i video whereas 1080p60 streams are transported

using 3G-SDI (SMPTE 424M). The media streams in an SDI-based net-

work are circuit-switched using an SDI switch containing a switching matrix

that interconnects the matrix’s input to the specific matrix’s outputs. The

switching matrix operates at the speed equal to the sum of the line speeds

of all its ports, resulting in a non-blocking switching operation at all times.

In addition, SDI-based media transport in studios has proven to be robust,

deterministic and reliable.

Lately, broadcasters are increasingly replacing SDI networking in their stu-

dios with IP-based solutions. Although IP has been widely successful in

other domains (e.g. telecom) owing to its flexibility, its utilization in broad-

cast studios has been limited. Mostly, the file-based workflows depend on

IP networks to transport the media between different studio devices; for

instance, between editing workstations, file servers, and archiving systems.

Outside the studios, media contribution and distribution are widely done

via IP networks. However, applications such as live media production still

rely on SDI-based transport. This could be attributed to the deterministic

performance and robustness of SDI vis-a-vis IP. However, with time the

speed of Ethernet switches has increased many folds, up to the point that

media transport could now easily be achieved using IP networking. IP also

supports multiplexing, i.e., multiple media streams of different formats can

be carried on the same link subject to the link’s bandwidth. This allows

a gradual up-gradation of the studio infrastructure for high-quality media

formats such that the same format-agnostic IP networks can be used un-

til enough bandwidth is available. It is in contrast to conventional studios

where specialized hardware like SDI routers need to be replaced with new

hardware compatible with new media formats. For instance, consider a stan-

dard full-HD (FHD) and 4K or ultra-HD (UHD) video having a resolution

of 1920x1080 and 3840x2160, respectively, with 4:2:2 sampling, 10 bits per

92 Chapter 3

sample, and a frame rate of 30fps. The uncompressed FHD and UHD video

streams in this format require 1.244 Gbps and 4.976 Gbps, respectively, on

a (physical) link. Thus, theoretically, up to 8 FHD or 2 UHD or, 4 FHD

+ 1 UHD, streams can be simultaneously carried on a 10G link. Ethernet

switches with tens of 10G ports are commercially available so that multiple

FHD streams can be switched by these switches simultaneously. Multiplex-

ing along with bi-directionality of IP allows a significant reduction in the

amount of cabling required when compared to SDI; thus resulting in cost re-

duction along with an ease of management. Furthermore, higher-resolution

video formats with bitrates touching tens of Gbps, e.g., 4K, can also be

transported on an IP network by upgrading the network with COTS 25G

or 40G port devices that are expected to become significantly cheaper in

the coming years; whereas the upgrade cycles for proprietary SDI switches

are very long and expensive.

A broadcast studio facility needs to interconnect multiple media devices.

Interconnection based on SDI switching has low-latency, is non-blocking,

lossless, and supports point to multipoint [12]. These properties must also

be supported when transitioning to an IP-routed infrastructure. A mul-

tilayer switching architecture, as commonly used in data centers, can be

thought of as a single switch interconnecting all the studio devices. Fig.

3.1 illustrates an all-IP studio architecture, where the switching core is a

fat-tree topology connecting media sources (e.g., cameras, microphones),

general-purpose compute nodes (e.g., Intel Xeon servers) and media sinks

(e.g., monitors, speakers). Although the size of the on-premise switching

network is much smaller than that of large data centers owned by Google

or Facebook, the same fat-tree topology can be used to fulfill the broadcast

studio requirements. Moreover, data center topologies are an ideal way to

interconnect multiple servers that are used to host virtualized media pro-

cessing functionality, as explained later. These topologies allow an easy

upgrade to new media formats (e.g., FHD, UHD) and scaling the number

of interconnections (e.g., new cameras) due to the format-agnostic nature

of the IP. Grass Valley has built an IP-routed switching network capable

of switching 6 Tbps live media traffic at a BBC facility [13]. In summary,

by building the studio network along the lines of data center networks (e.g.

leaf-spine), the speed of the switching fabric can be scaled massively such

that multiple uncompressed 4K video streams could also be transported

across the studio network built entirely upon IP [12].

Due to the growing popularity of IP for media transport, the Society

of Motion Picture and Television Engineers (SMPTE) has released a suite

of standards ST 2110 that describe how to transport uncompressed me-

dia streams over an IP network [14–17]. The ST 2110 suite of standards

On Decomposition and Deployment of Virtualized Media Services 93

switching core

compute nodes

media sinks

media sources

Figure 3.1: Illustration of studio architecture based on a data center topology.

allows transport and processing of media essences, i.e., video, audio, and

ancillary data, as independent streams. By allowing separate elementary

essence streams, media production is significantly simplified in contrast to

the tightly bundled streams in SDI or ST 2022 [18]. Table 3.1 lists different

standards of the suite ST 2110 along with a short description.

For the independent transport of media essences, SMPTE ST 2110-10/-

Table 3.1: SMPTE 2110 suite of standards and short description

Standard Description
ST 2110-10/-20/-
30 [14–16]

addressing system concerns and un-
compressed video and PCM audio
streams

ST 2110-21 [19] specifying traffic shaping and delivery
timing of the uncompressed video

RP 2110-23 [6] specifies methodologies for splitting
high bandwidth single video essence
streams into several lower bandwidth
streams

ST 2110-31 [20] specifies the real-time, RTP-based
transport of AES3 signals over IP net-
works, referenced to a network refer-
ence clock

ST 2110-40 [17] transport of ancillary data packets

20/-30 specifies use of the Real-time Transport Protocol (RTP) which itself

94 Chapter 3

is based on the User Data Protocol (UDP). At the essence sender, the data

(e.g., video, audio, or ANC) is broken into multiple segments that go into

the RTP payload, which is then attached to the RTP header containing

the required flags and fields. The RTP packets are recursively encapsulated

while transcending the lower layers of the networking stack. The packets

on the network are independently transported to the receiver where they

are reassembled by referring to the RTP sequence number contained in the

header. The payload is then passed to the application/device where a full-

frame is generated for further processing or display.

3.3.1.1 Media Decomposition

Uncompressed high-resolution video streams, e.g., 4K or 8K, are difficult to

transport and process given their high bandwidth and therefore high com-

pute requirements. By decomposing a high-bandwidth stream into multiple

low-bandwidth streams, this issue can be alleviated. Given this challenge,

the SMPTE released a recommended practices document RP 2110-23 that

describes three mechanisms through which high-bandwidth streams can be

split [6]. The first scheme is called Phased decomposition where a high

frame rate stream is decomposed into multiple low frame rate streams, also

known as “phases”. This decomposition scheme is particularly useful when

working within an environment consisting of high-speed cameras with high

refresh rates, e.g., 120 Hz. Sample interleave decomposition is the second

scheme where M -way splitting of a high-bandwidth stream results in M

sub-streams each carrying frames of resolution 1/M that of the original

stream. The third stream decomposition method– Square Division (SD) is

explained next.

M -way SD decomposition of a media stream results in splitting of each

frame of the original stream into M quadrants, each carried by a different

sub-stream. Fig. 3.2 illustrates 4-way decomposition of a 4K video stream.

The original 4K (3840x2160p30) stream with the bitrate of 4.976 Gbps

when 4-way decomposed results in four 2K (1920x1080p30) sub-streams

each with the bitrate of 1.244 Gbps. Each 2K stream can be further de-

composed again using 4-way SD such that a total of sixteen 960x540p30

sub-streams are obtained. The transport and processing of multiple low-

bandwidth streams (2K or 960x540p30) is clearly easier when compared to

a single high-bandwidth (4K) stream. This paper only considers the SD

decomposition method as it can be exploited for VMF-FG decomposition,

which has been explained in detail in section 3.4.

On Decomposition and Deployment of Virtualized Media Services 95

4-way
decomposition

3840

2160

4K

q=0
q=1

q=2
q=3

1920

10802K
2K

2K
2K

Figure 3.2: An example of 4-way SD decomposition of 4K video stream.

3.3.2 Virtualized Media Processing

Similar to the use of proprietary equipment for media transport, media pro-

cessing in broadcast studios has been dominated by proprietary hardware

appliances. This is due to the high performance offered by specialized hard-

ware platforms [2]. COTS platforms consisting of general-purpose compute

nodes (e.g., Intel Xeon servers), however, have lately become significantly

faster (Moore’s law) 2 so that they can be used to run Media Functions

(MFs). For instance, consider an MF that mixes two video streams with

a special effect (e.g. wipe or dissolve transitions). Today, broadcasters use

a specialized hardware appliance called vision-mixer to achieve this func-

tionality. This functionality, however, can also be realized in software run-

ning on a COTS server [21]. The production quality vision-mixer has been

implemented using open source tools like OBS studio and KX studio run-

ning on a general-purpose platform. The resulting vision mixer provides

a real-time delay of 1.4s, which is acceptable for multi-camera production.

Furthermore, the processing delays in software-based media production fa-

cilities can be reduced by exploiting several optimizations, e.g., kernel of-

fload mechanisms such as DPDK and netmap [22], hardware-acceleration

of media processing using FPGAs and GPUs [23], [24]. As the focus of this

paper is on the media service deployment problem, performance optimiza-

tion mechanisms shall not be discussed in this paper.

Exploiting general-purpose compute platforms instead of dedicated hard-

ware to host services is not limited only to the TV broadcast industry.

Telecom operators are adopting Network Function Virtualization (NFV).

NFV is an architecture where packet processing functionality, which is con-

ventionally realized by specialized hardware appliances called middleboxes,

2The speed-up in overall throughput in the last few decades is mostly because of the
parallelism resulting from multiple CPU cores. The increase in single processor speed
has been marginal.

96 Chapter 3

is being realized using Virtual Network Functions (VNFs). These VNFs

hosted on the general-purpose compute platforms. Analogous to the VNFs

in NFV, media processing can be realized using software-based implementa-

tions of MFs running in a virtualized environment; we refer to these software

MF implementations as Virtual Media Functions (VMFs). Tab. 3.2 lists

some example VMFs along with a short description for each of them.

Table 3.2: Example VMFs with short description.

Name Notation Description
Chroma
key

chrm-key Replaces the background (narrow
range of colour) of a video stream
with another video stream, e.g.,
weather presenter background.

Picture-
in-picture

pip Inserts a small resolution video
stream into a large resolution video
at a given coordinate.

Video
quality
assess-
ment

vqa Assesses the amount of distortions
introduced to the media by a VMF.

Brightness
Adjust-
ment

brt-adj Adjusts the pixel values of a video
stream according to the correction
signal produced by a VQA VMF.

The BBC has built prototypes for live IP production and also carried out

a live multi-site all-IP UHD production trial at the Glasgow Commonwealth

Games in 2014 [25]. Partnering with Isotama, they have also demonstrated

the live mixing of video streams using a software-based video processing

pipeline that can be controlled through a browser application [3]. Addition-

ally, Grassvalley has released Agile Media Processing Platform (AMPP)

which is a microservice-based solution that leverages elastic compute of the

COTS platforms to run a variety of media processing workflows [4]. To sum-

marize, media production using general-purpose compute infrastructure is

quite feasible and broadcasters are expected to adopt them with time.

Taking inspiration from NFV, we define MFV as an architecture where me-

dia services are implemented using Virtual Media Function (VMFs) running

on general-purpose compute platforms. A detailed discussion on the MFV

architecture can be found Chapter 1. The CO layer in Fig. 1.13 performs

service orchestration by coordinating various resources across the MFVi

layer. To this end, the CO layer takes various inputs such as VMF Place-

ment and Chaining (VMF-PC) algorithms, the media service representation

On Decomposition and Deployment of Virtualized Media Services 97

(e.g., VMF-FG), profiles containing VMFs’ resource demands, the QoS re-

quirements of the media services, etc, to do resource allocation by running

the selected VMF-PC algorithm that outputs the required VMF-FG-to-

MFVi mapping, that is used to reserve physical resources in the MFVi

layer. By carefully designing and selecting the appropriate VMF-PC algo-

rithm, the QoS requirement of the media service can be met while efficiently

utilizing the resources.

The decomposition of high-bandwidth streams in an MFV environment pro-

vides an opportunity to further decompose the VMFs of a VMF-FG; thus

it can result in improving resource utilization, as shall be discussed in the

next section.

3.4 System Model

In this section, we formalize the MFV network model, describe the VMF-

FG decomposition and deployment problem, and present two algorithms to

solve them.

The traditional media production environments are inflexible in terms of the

transport and processing of media streams due to their dependence on spe-

cialized hardware. Therefore, IP-networking for media transport combined

with virtualization of media processing workflows seems to be well suited

for future broadcast studios. The media services in these environments can

be denoted using a directed graph referred to as VMF-FG as explained later

in this section.

MFV is more than just the softwarization of MFs and then its deployment

on the COTS platform. Virtualization of MFs opens several opportuni-

ties that were not earlier possible with the physical implementations of

MFs. Before the deployment of media service, VMF-FG can be optimized

such that fewer resources are consumed compared to un-optimized VMF-

FG post-deployment. The optimization can be done by, e.g., decomposing

the VMFs, distributing the switching functionality and using the state of

downstream VMFs to enable/disable upstream VMFs, etc.

Before discussing the VMF-FG decomposition and deployment problems,

we first formalize the MFV model. The notations used for various param-

eters, variables and procedures along with a short description are listed in

Tab. 3.3. We model the MFVi physical network as a connected directed

graph GI = (N,E). Here, N and E denote the set of physical nodes and

links, respectively, in the MFVi network. A subset of nodes Nc ⊂ N are

COTS server nodes that have the required resources to run VMFs. The rest

of the nodes ∀n ̸∈ Nc are just forwarding nodes, i.e., switches or routers. As

each node n ∈ Nc has a limited amount of resources (e.g. CPU, RAM, disk,

98 Chapter 3

Table 3.3: Notations used in the system model for parameters, variables and
procedures.

Notation Description
GI = (N,E) Directed graph representation of the MFVi net-

work, where N and E are the set of the physical
nodes and links, respectively.

Nc Set of all server nodes, i.e., nodes with compute
resources.

cpun CPU resources (in number of cores) present on
a server node n ∈ Nc.

bwni,nj
Available bandwidth available on the physical
link (ni, nj) ∈ E.

G = (F ,L) VMF-FG representation of a media service,
where F and L are the set of VMF and vir-
tual links, respectively.

Fsrc Set of all media sources in G.
Fsnk Set of all media sinks in G.
Ph(l), Pv(l) Number of pixels on a frame corresponding to

the virtual link l ∈ L.
Size(l) Total number of pixels on a frame corresponding

to the virtual link l ∈ L.
fps(l) Refresh rate of the stream on the virtual link

l ∈ L.
Pf Set of all ports in the VMF f .
Upstr(fp) Upstream VMF on the port p ∈ Pf of the VMF

f .
M Decomposition parameter by which each virtual

link is decomposed, where M = 4m,m ≥ 0.
Gsw A subgraph in the VMF-FG G consisting of only

switching VMFs.
Gset
sw The set of all subgraphs Gsw in the VMF-FG G.

txu,v u-to-v Transmit condition.
Txsnk

u,v u-to-v Cumulative transmit condition when
starting the traversal from the sink VMF snk.

α Variable containing VMF-to-node assignment
mapping.

γ Variable containing Virtual link -to- physical
link mapping.

Fnbrs
f The set of upstream VMF neighbours of f ∈ F .

used res Variable containing currently reserved re-
sources.

cap Resource capacity of physical nodes and links in
GI .

On Decomposition and Deployment of Virtualized Media Services 99

etc), we just use cpun to represent the resource capacity of node n, here it

is the total number of CPU cores. Each physical link e = (ni, nj) ∈ E has

an associated physical bandwidth denoted by bwni,nj
.

A media service s is realized by allowing the media traffic to flow through

a specific arrangement of VMFs. The arrangement of VMFs defining the

service is represented by a directed acyclic graph (DAG) G = (F ,L), here re-

ferred to as VMF Forwarding Graph (VMF-FG). A node f ∈ F of the VMF-

FG represents an endpoint (media sources or sinks), or a VMF, whereas an

edge l = (fi, fj) ∈ L is the virtual link connecting the VMFs fi and fj . An

endpoint is either from the set of media sources Fsrc that includes cameras,

playout servers or from the set of media sinks Fsnk that includes multi-

viewer screens, file-servers (archives, OTT, etc) and the broadcast trans-

mitter (DVB-T Tx). Each virtual link l ∈ L for a video processing service

is annotated by parameters such as the frame resolution (e.g., 2K, 4K),

the color space (e.g., RGB, YCbCr), the sub-sampling scheme (e.g., 4:2:2,

4:2:0), and the refresh rate (e.g., 24fps or 30fps), where the frame resolution

is PhxPv, Ph is the number of pixels in the horizontal direction and Pv is the

number of pixels in the vertical direction. Similarly, for an audio stream,

the annotation contains parameters such as the sampling frequency (e.g.,

48kHz), the number of audio channels (e.g., 1, 2, 8), etc.

Fig. 3.3 shows G, the VMF-FG representation of an example media service.

In this VMF-FG, F = {src0, src1, src2, chrm-key, scl, vqa, pip, dst0, dst1}

and L = {(src0, chrm-key), (src1, chrm-key), (src2, scl), (chrm-key, pip),

(scl, pip), (chrm-key, vqa), (vqa, dst0), (pip, dst1)}. Here, the set of video

sources is Fsrc = {src0, src1, src2} and the set of video sinks is Fsnk =

{dst0, dst1}. The parameters associated with the streams corresponding

to all virtual links take values as follows: YCbCr for the color space,

’4:2:2’ for the sub-sampling scheme, and 30fps as the refresh rate. The

link (scl1, pip) has a resolution of 646x364 and all other links have the res-

olution of 1920x1080, except for (vqa, dst0). The VMF chrm-key applies

the chroma-keying operation on its inputs that are connected to the two

video sources src0 and src1, to produce the output where the background

(e.g., green pixels) of the first stream (src0) is replaced by the background

stream produced by the second source (src1). VMF vqa assesses the qual-

ity of chrm-key’s output and stores the results in dst1. The output of the

chrm − key VMF may contain some artifacts due to, e.g., low CPU allo-

cation or delayed / lost packet in one of its input streams. The output

of chrm-key is also multicasted to pip that embeds a low-resolution video

stream received on its second input. Using the scaler VMF scl1, the sec-

ond input is generated by scaling down the video stream produced by src2.

The output of pip VMF is then terminated at the sink dst1. Similarly, a

100 Chapter 3

VMF-FG can be used to represent any other complex media service. Next,

chrm-

key pip

sclsrc2

dst1src1

src0

G

vqa dst0

1

0

2

3 4

5

6

7 8

C

...

(0, 2): {P
h
: 1920, P

v
: 1080, spl: ‘4:2:2’, cs: ‘YCbCr’, fps: 30}

(4, 7): {P
h
: 646, P

v
: 364, spl: ‘4:2:2’, cs: ‘YCbCr’, fps: 30}

...

Figure 3.3: The VMF-FG G representation of an example media service.

we define the VMF-FG decomposition problem and describe an algorithm

to produce the M -way decomposition of a given VMF-FG.

3.4.1 VMF-FG Decomposition

Given a VMF-FG G = (F ,L), the M -way decomposition of G is another

VMF-FG G′ that is functionally equivalent to G but all of its virtual links

are M -way decomposed. Here, we assume that the decomposition scheme

used is SD. Decomposing the virtual links of a VMF-FG further allows the

decomposition of the VMFs of the given VMF-FG. With VMFs and vir-

tual links being decomposed, several optimizations can be applied to the

VMF-FG without altering the overall functionality. By solving the VMF-

FG decomposition problem, we imply that a functionally equivalent but

optimized VMF-FG is generated. The optimized VMF-FG is generally less

resource-demanding than the original VMF-FG and thus can be deployed

more efficiently.

Next, we describe an algorithm we have proposed to solve the VMF-FG

decomposition problem.

The VMF-FG decomposition algorithm takes an undecomposed VMF-FG,

G = (F ,L) along with the decomposition parameter M and returns the M -

way decomposed VMF-FG. The decomposition parameter M = 4m, where

On Decomposition and Deployment of Virtualized Media Services 101

m ≥ 0, indicates the level of decomposition for each virtual link in the

VMF-FG. For example, M = 1 (m = 0) implies no decomposition, whereas

M = 4 (m = 1) implies a 4-way decomposition as shown in Fig. 3.2. For

the sake of simplicity, we assume that all VMFs are Multiple Input Single

Output (MISO) types, similar to the one shown in Fig. 3.4. A MISO VMF

can have multiple input ports such that each of its input ports is connected

to the output port of only one upstream VMF. The single output port of

the VMF f is simply denoted by the VMF itself, i.e., f , whereas the pth

input port of the VMF is denoted by fp. In Fig. 3.4, the VMF f connected

to the port p of the VMF f is denoted by Upstr(fp) and the frame size on

the virtual link l = (Upstr(fp), f) is simply denoted as Size(Upstr(fp)),

e.g. if Upstr(fp) = up, Size(up, f
p) = Size(Upstr(fp), fp) = Size(fp).

The single output port of the VMF can be multicasted to multiple destina-

tions, e.g., the raw camera footage being processed by some VMF can also

be archived at the same time for later use. In Fig. 3.4, the output of f is

multicasted to D destination VMFs denoted by d0, d1, d2, ..., dD−1 from the

single output port ’f ’.

u0

u1

up

uP-1

f

d0

d1

d2

dD-1

0

1

p

P-1

Figure 3.4: An illustration of a MISO VMF f .

A VMF with multiple output ports can be easily decomposed into mul-

tiple VMFs with single output ports. For example, consider the Multiple

Input Multiple Output (MIMO) VMF f , shown in Fig. 3.5 (a), where its

P inputs ports are connected to the upstream VMFs u0, u1, u2, ..., uP−1

and similarly its P ′ output ports are connected to the downstream VMFs

d0, d1, d2, ...dP ′−1 on separate unicast links. The VMF f internally imple-

ments a function g, operating on a input vector I = [u0, u1, u2, ..., uP−1],

whose output is then shared to produce the outputs h0(g(I)), h1(g(I)),

102 Chapter 3

h2(g(I))...hP ′−1(g(I)). The MIMO VMF f can hence be decomposed into

n + 1 MISO VMFs as shown in Fig. 3.5 (b). First, the VMF g is applied

over I to produce a single output g, which is then multicasted to the in-

puts of P ′ VMFs h0, h1, h2, ..., hP ′−1, respectively. In this example, each

output port of f is connected to a single downstream VMF on a unicast

link. However, MIMO VMFs having multicast links at their output ports

can be decomposed in a similar manner. This way, any MIMO VMF in a

VMF-FG can be transformed into a set of MISO VMFs before proceeding

to the first step of the VMF-FG decomposition algorithm.

h0

h1

h2

hP’-1

u0

u1

u2

uP-1

I

g

f

h0

h1

h2

hP’-1

u0

u1

u2

uP-1

I

g

d0

d1
d2

d0

d1
d2

dP’-1

(a)

(b)

Figure 3.5: (a) Internals of the MIMO VMF f and (b) its decomposition into
MISO VMFs g, h0, h1, ..., hP ′−1

The VMF-FG decomposition algorithm consists of four steps as shown

in Fig. 3.6.

Virtual Link Decomposition: The first step of the procedure is

the decomposition of all virtual links of the VMF-FG by M . Each link

∀(fi, fj) ∈ L, fi = Upstr(fp
j), is replaced by M (fi, fj) links, where fi =

Upstr(fp′

j), p′ = [pM, (p− 1)M − 1]. As we have assumed the SD decompo-

sition in our procedure, the frame size of the virtual link (fi, fj) after de-

composition becomes Size′(fp′

j) = Size(fp
j)/M = (PhPv)/M , here Ph and

Pv are number of pixel in horizontal and vertical directions, respectively,

On Decomposition and Deployment of Virtualized Media Services 103

Virtual Link

Decomposition

VMF

 Decomposition

Switching

Distribution

Carrying

Tx condition

Decomposed

VMF-FG

VMF-FG, M

VMF specific (accomplished

according to the given

template)

Figure 3.6: Flowchart showing the VMF-FG decomposition procedure.

in the frame corresponding to (fi, fj) before decomposition. For example,

consider the part of the VMF-FG showing two neighbouring VMFs fi and

fj as shown in Fig. 3.7 (a) whereas Fig. 3.7 (b) shows link decomposition

of (fi, fj) into M new links.

The forwarding graph returned after the first step is denoted as G1.

VMF Decomposition: After the first step, the number of input and

output ports of each VMF in the resulting forwarding graph G1 are grown

M times. Next, G1 is transformed into a forwarding graph only contain-

ing VMFs with single outputs. In this step, each MIMO VMF is replaced

by a forwarding graph consisting of MISO (switch and non-switch) VMFs

connected through multicast links. The forwarding graph nodes, i.e., MISO

switch and non-switch VMFs, are then appropriately connected to the con-

trol signals.

The VMF decomposition procedure is specific to each VMF. This can be

provided as a template/code by the developer of the VMF that contains the

steps to generate the required forwarding graph and distribute the control

signals to the VMFs.

Next, we show how a chrm-key and picture-in-picture (pip) VMF can be

decomposed.

104 Chapter 3

fi

fj
p’

pM
pM+1

(p+1)M-1

fi

fj
p

(a)

(b)

fi = Upstr(fj
p)

Size(fj
p) = PhPv

fi = Upstr(fj
p’)

p’ = [pM, (p+1)M-1]

Size’(fj
p’) = PhPv / M

Figure 3.7: Illustration for the virtual link decomposition step. (a) The virtual
link (fi, fj) ∈ L and (b) its decomposition by M .

The VMF decomposition step for chrm-key is quite straightforward as

shown in Fig. 3.8 (c). Prior to the VMF decomposition, the link decom-

position step is performed, as shown in Fig. 3.8 (b). Each link in Fig. 3.8

(a), i.e, (s0, chrm-key), (s1, chrm-key) and (chrm-key, d0) is decomposed

into M = 4 links corresponding to the four quadrants of a frame. As each

output pixel of chrm-key VMF is computed using the corresponding input

pixels only, the chroma-keying operation can be performed in each quad-

rant independent of each other. Therefore, chrm-key can be decomposed

into chrm-key0, chrm-key1,chrm-key2 and chrm-key3, each responsible

for producing output for quadrants q = 0, q = 1, q = 2 and q = 3, respec-

tively.

Next, we discuss a more complex example of VMF decomposition.

Consider the pip VMF shown in Fig. 3.9 (a). The pip VMF inserts the

frames of the video stream on port 1 into the frames of the video stream

on port 0 at a given coordinate in the upper-right quadrant. The controller

connected to the pip VMF is used to control the operation of the pip VMF,

i.e., it signals if the second stream is to be inserted in the first stream or

not. In other words, if say ctrl == 0, the pip VMF is disabled and the

output of the pip VMF is the same as that of s0 and if ctrl == 1 the pip

operation is enabled on the output. Fig. 3.9 (b) shows the pip VMF and its

neighbours after performing the virtual link decomposition step by M = 4.

Before decomposing the pip VMF, its upstream VMFs s0 and s1 are de-

composed into s0q, ∀q ∈ [0,M − 1] and s1q, ∀q ∈ [0,M − 1], respectively,

On Decomposition and Deployment of Virtualized Media Services 105

each corresponding to the four quadrants, as shown in Fig. 3.9 (c). As in

this example, picture insertion occurs in the upper-right (q = 1) quadrant;

thus processing will be required for this quadrant only. This implies that

after pip VMF decomposition, the VMF pip1 (q = 1), which is responsible

for performing pip operation in the upper-right quadrant will be instanti-

ated. Moreover, as no picture is inserted in the other three quadrants, no

processing is required for these quadrants, i.e., the pip VMFs – pip0, pip2
and pip3, corresponding to the upper-left (q = 0), lower-left (q = 2) and

lower-right (q = 3) quadrants, respectively, are not instantiated (Fig. 3.9

(c)). A two-port switch VMF is also instantiated that takes the output of

s01 at port 0 and pip1 at port 1. Based on the ctrl value, the sw VMF

switches between its inputs, i.e., if ctrl == 0, the sw VMF outputs the

s10’s output whereas if ctrl == 1, the sw VMF outputs the pip1’s output.

For other three quadrants, the respective upstream (s0q, ∀q = {0, 2, 3})

and downstream VMFs (d0q, ∀q = {0, 2, 3}) are connected.

Other VMF types such as split-screen, switcher (with transition effects, e.g.,

wipe), etc, can be also decomposed similarly.

The forwarding graph returned after the second step is denoted as G2

Switch Functionality Distribution: Following the decomposition of

all VMFs, the resulting forwarding graph G2 consists of MISO switch and

non-switch VMFs linked by multicast virtual links. Next, we describe how

the functionality of switch VMFs can be distributed to the VMFs that are

upstream and downstream to the switch VMF.

The switch VMF sw shown in Fig. 3.10 has two inputs connected to the

upstream VMFs u0 and u1 and its output is connected to the downstream

VMF d. The functionality of the switch VMF sw can be distributed to the

upstream VMFs by allowing triggering the correct upstream VMFs to trans-

mit to the correct downstream VMF(s) based on the value of the control

signal ctrl. The control signal is wired to u0 and u1 to allow the distribution

of sw functionality. For ctrl == 0, only u0 transmits to d and u1 transmits

to d if ctrl == 1.

The forwarding graph G2 obtained after the VMF decomposition step

can contain groups of switch VMFs chained together with multicast links

between two or more non-switch VMFs as shown in Fig. 3.11. These sub-

graphs with switch VMFs (blue cloud) and multicast links can be simplified

as explained next.

First, the subgraphs Gset
sw consisting of switch VMFs only are isolated by

removing all non-switch VMFs from G2 and then performing the graph

traversal algorithm to find all the connected components consisting of switch

VMFs. The switching functionality of each isolated subgraph is then dis-

106 Chapter 3

(a)

chrm-

key

s

0

s
1

d
0

1

(b)

chrm-

key

s

0

s

1

d
0

0

3

4

7

0

3

(c)

chrm-

key0

s

00

s
10

d
00

1

0

chrm-

key1

s

01

s
11

d
01

1

0

chrm-

key2

s

02

s
12

d
02

1

0

chrm-

key3

s

03

s
13

d
03

1

0

Figure 3.8: 4-way decomposition of the chrm-key VMF. (a) Illustration of
operation of the chrm-key VMF. The chrm-key VMF after (b) the virtual link

decomposition step and (c) the VMF decomposition step.

On Decomposition and Deployment of Virtualized Media Services 107

(a)

pip

s

0

s
1

d
0

ctrl
ctrl==0

0

1

(b)

pip

s

0

s

1

d
0

ctrl

0

3

4

7

(c)

s
00

s
01

s
10

s
11

s
12

s
13

d
00

d
01

d
02

d
03

s
02

s
03

pip
1

sw

ctrl

0

1

2
3

4

ctrl==1

Figure 3.9: 4-way decomposition of the pip VMF. (a) Illustration of operation of
the pip VMF. The pip VMF after (b) the virtual link decomposition step and (c)

the VMF decomposition step.

sw

u0

u1

d

0

1

ctrl

sw

u0

u1

d

ctrl

(b)(a)

Figure 3.10: Illustration showing the distribution of switching functionality of a
VMF to its upstream VMFs.

108 Chapter 3

tributed to its upstream VMFs. Assume the subgraph Gsw = (Fsw,Lsw)

is one such sub-graph (Gsw ∈ Gset
sw) obtained from G that consists of only

switch VMFs and the control signals to all switch VMFs in Gsw are rep-

resented using a single value ctrl. The task is to distribute the switching

functionality of Gsw to its upstream (non-switch) VMFs. The set of non-

switch VMFs whose output is connected to the VMFs in Gsw is denoted by

Usw = {Upstr(fp)|∀f ∈ Fsw, ∀p ∈ Pf ;Upstr(fp) ̸⊂ Fsw}. For each VMF

u ∈ Usw, first, the set of non-switch VMFs Du,ctrl0 downstream to Gsw

whose input is connected to u is determined along with the corresponding

control signal, say ctrl = ctrl0, that results in the connection. Next, a mul-

ticast link is created for ctrl = ctrl0 and the VMFs in Du,ctrl0 are added to

this multicast link. Fig. 3.11 (a) shows a part of VMF-FG with a switch-

ing subgraph Gsw that needs to be distributed. Assume the VMF u serves

the output ports of the VMFs vctrl00 , vctrl01 , vctrl02 , ...vctrl0n−1 of Gsw when the

control signal value is, say, ctrl0. At the output of u, we create an output

port (multicast link) corresponding to ctrl0 and also add the inputs of the

downstream VMFs Du,ctrl0 = {dctrl00 , dctrl01 , dctrl02 , ...dctrl0n−1 } to this multicast

link as shown in Fig. 3.11 (b). Similarly, corresponding to other control sig-

nal values, additional mutlicast links (on separate output ports) are created

for u and downstream VMFs are added to those mutlicast links. Then, the

process is repeated for the rest of the upstream VMFs u ∈ Fsw. Lastly, the

switching subgraph Gsw is removed from G2.

Afterwards, the above steps are repeated for the rest of the switching sub-

graphs in (Gset
sw).

The upstream VMFs of switching subgraphs in G2 have now multiple out-

puts. However, at any instance in time, one control combination is active

and thus traffic flows only on a single multicast link. Also, the downstream

VMFs ports listen to many multicast links out of which only one has input

on it at any instance of time.

The forwarding graph returned after the third step is denoted as G3

Transmit condition Propagation: In G3, if a control signal value re-

sults in the VMF f having no destination VMFs to transmit then the media

processing done by f is not utilized, thus the control signals for f can be

used to switch-off the computation of f and its upstream VMFs that only

feed f .

Starting from a sink node snk ∈ Fsnk, we travel in the reverse direction us-

ing the DFS algorithm [26] and only backtrack when we have encountered a

source node fsrc ∈ Fsrc. During the traversal, transmit condition of the up-

stream VMF are updated according to its current transmit conditions and

the transmit condition of its downstream VMF. Consider the three consec-

On Decomposition and Deployment of Virtualized Media Services 109

d0

ctrl0
u

dn-1
ctrl0

Switching
sub-graph

ctrl

d1
ctrl0

v0

out,ctrl

v1

out,ctrl

vn-1
out,ctrl

Gsw

d0

ctrl0
u

dn-1
ctrl0

 d1
ctrl0

(a)

(b)

multicast link
corresponding
to ‘ctrl0’

Figure 3.11: Distribution of switching functionality of a switching subgraph to its
upstream VMFs. (a) VMF-FG region showing a switching subgraph and (b) its

distribution to the input VMF u for a given control value ctrl0.

110 Chapter 3

utive VMFs u, v and w during a path traversal starting with snk through

G3, as shown in Fig. 3.12. Assume, during this traversal the cumulative

transmit condition of v (to w) is Txsnk
v,w and the transmit condition from ’u

to v’ is txu,v. Then, the cumulative transmit condition for the VMF u to

v for this traversal is Txsnk
u,v = Txsnk

v,w AND txu,v, where AND is the binary

AND operation.

Similarly, the VMF-FG is traversed one-by-one starting from the remain-

ing sink VMFs meanwhile updating the transmit condition of the VMFs.

The same VMF can be encountered during various traversals from different

sinks; the transmit condition in such cases is OR between VMF’s transmit

conditions in all traversals.

The forwarding graph returned after the fourth step is the required decom-

posed VMF-FG G′.

u v
tx{u,v}

Txu,v
snk

w

Txv,w
snk

Figure 3.12: Propagation of transmit conditions from the downstream v VMF to
the upstream VMF u.

3.4.2 VMF-FG Deployment

In this section, we describe two different VMF-PC algorithms that can be

used to deploy a VMF-FG G, decomposed or not, on a given MFVi network

GI . The first algorithm is the next-fit based VMF-PC algorithm we refer

to as the NFPC algorithm and the second algorithm is based on the min

k-cut algorithm we refer to as the kcut-PC algorithm.

3.4.2.1 Next-fit Approach

The pseudo-code for the next-fit based VMF placement and chaining algo-

rithm is shown in Alg. 3.2. The inputs to the algorithm are i) the directed

graph representing the VMF-FG G = (F ,L) of the media service, ii) the

directed graph representing the MFVi GI = (N,E) and iii) the resource

capacity cap of the physical nodes and links in GI , i.e., cpun and bwni,nj
.

The algorithm outputs the variables α and γ that denote VMF-to-node

mapping and denotes the virtual link -to- physical path mapping, respec-

tively. Before starting, variable initialization is done: quvmf representing

a queue, used res representing the physical resources currently used in the

procedure, α, and γ are all initialized with ϕ.

On Decomposition and Deployment of Virtualized Media Services 111

Algorithm 3.1: Procedure for Next-Fit search

1 Procedure NextFit(f , α, used res, G = (F ,L), GI = (N,E), cap):
/* start with the last used node in Nc */

2 for n in Nc do

3 linksf ← {(f, fi) | ∀(f, fi) ∈ L} ; /* virtual links associated

with f */

4 pths ← chainVMFs(f , α, used res, linksf , G
I , cap, n) ;

/* chains f with neighb. VMFs */

/* check resources on n for α */

5 if enghRes(f , used res, GI , cap, n) then

6 return n, pths

7 return None, None

8 end

Algorithm 3.2: Algorithm for next-fit based VMF-PC

/* VMF-FG and MFVi network */

Input : G = (F ,L), GI = (N,E), cap
/* VMF placement and chaining mapping */

Output : α, γ
Initialize: quvmf , used res, α, γ

1 for snk in Fsnk do

2 En-queue snk to quvmf

3 while quvmf ̸= φ do

4 De-queue f from quvmf

5 NextFit(f , α, used res, G, GI , cap) ; /* Place and chain f
*/

6 If successful update α, γ, and used res else stop procedure

7 Assign upstream neighbours of f to Fnbrs
f

8 for f ′ in Fnbrs
f do

9 if f ′ is placed then

10 Chain f and f ′

11 If successful update γ and used res else stop procedure

12 else if f ′ ̸∈ quvmf then

13 En-queue f ′ to quvmf

/* All VMFs have been PC’ed */

14 Update cap using used res

Each sink node snk is considered as a starting node for the BFS traversal

through the VMF-FG [26]. Until the queue quvmf is empty, the following

procedure is repeated.

quvmf is first de-queued and assigned to f . Using the NextFit procedure

112 Chapter 3

shown in Alg. 3.1, placement and chaining of f is attempted. The NextFit

procedure starts searching through Nc server nodes starting with the last

used node and returns with the node having enough resources to place f and

chain it with the previously placed VMFs. If the PC of f is not successful,

the algorithm is stopped. Otherwise, α is updated with the node mapping

of VMF f , γ is updated with the physical path mapping of the virtual links

linking f with its down-stream VMFs, used res is updated according to the

resource demands of f . Next, up-stream neighbours f ′ of f are assigned to

Fnbrs
f . Then, a for loop is used to loop over Fnbrs

f . If a VMF f ′ ∈ Fnbrs
f is

already placed, it is chained with f ; otherwise, it is en-queued to quvmf . If

the PC of all the VMFs is successful, the resource capacity in MFVi (GI) is

updated by referring to used res variable that contains the current resource

usage.

Assuming, the maximum number of VMFs in a VMF-FG is constant, i.e.,

|F | ≤ Fmax, it can be concluded from Alg. 3.1 and Alg. 3.2 that the

asymptotic time complexity of the NFPC heuristic is linear in the number

of requests and total server nodes, i.e., O(|R| ∗ |Nc|).

3.4.2.2 k-cut Approach

The pseudo-code for k-cutPC algorithm is shown in Alg. 3.5. The output

of the algorithm is same as that of the NFPC algorithm, whereas the input

additionally includes nbst shown in Alg. 3.2. Here, nbst is the number of

best k-cuts that are checked for VMF-PC. Before starting, used res, α, and

γ are initialized with ϕ.

k-cutPC algorithm attempts to first partition each connected component

of VMF-FG G and then deploy them using the NFPC algorithm shown

in Alg. 3.2. The algorithm starts with the minimum possible k value

kmin =
∑

f∈C

cpuf/max
n∈N

{cpun}, nbst best kmin-cuts of G are returned us-

ing the procedure NbstKcut.

The pseudo-code for the procedure NbstKcut is shown in Alg. 3.4. It

uses the random contraction algorithm RandContr to get a k-cut of an un-

directed graph G [27]. The quality of the generated k-cuts, in terms of

the sum of the weights of the crossing edges, can be boosted by repeat-

ing RandContr Nruns times and nbst best k-cuts are generated by running

RandContr Nruns times. By passing nbst = 10, the ten best cuts are re-

turned that are sequentially checked for PC in Alg. 3.5.

One-by-one PC is attempted on each k-cut (Fcut,Lcut) ∈ Fcuts,Lcuts in

the order of increasing weight until all the VMF clusters of the selected cut

((Fcut,Lcut)) are placed and chained successfully. If a component C could

not be deployed for any cut (Fcut,Lcut) ∈ Fcuts,Lcuts, the procedure is

On Decomposition and Deployment of Virtualized Media Services 113

repeated for an incremented value of k until the maximum value of k =

kmax =| C |. If a component C could not be deployed for k ∈ [kmin, kmax],

the deployment has failed and the algorithm stops . In case, all the con-

nected components C ∈ Ccpts of G are placed, resource capacities in GI are

updated by referring to used res.

The k-cutPC algorithm trades off speed for the amount of used network

bandwidth. As the asymptotic running time of RandContr is O(|L|) and

it is called Nruns = |F |2k−2 ∗ log |F | times from NbstKcut, the time com-

plexity of NbstKcut is O(|F |2k−2 ∗ log |F | ∗ |L|). Assuming |F | ≤ Fmax,

the overall time complexity of the k-cutPC is also O(|R| ∗ |Nc|), albeit the

scaling constant |F |2k−2 ∗ log |F | ∗ |L| results in a lower speed of k-cutPC

as compared to NFPC.

Algorithm 3.3: Procedure for randomized graph contraction [27]

1 Procedure RandContr(G = (F,L), k):
2 while | F |> k do

3 Pick a link l = (fi, fj) randomly from L with probability ∝ bw(l)
4 Merge fi and fj into a single node
5 remove self-loops

6 wt← Sum of weight of all edges crossing last k nodes
7 return G, wt

8 end

Algorithm 3.4: Procedure for generating nbst best k cuts

1 Procedure NbstKcut(G = (F,L), k, nbst):

2 Gcltrs,Wcltrs ← φ, φ ; /* Set of generated cuts and

corresponding weights */

3 Nruns ←| F |
(2k−2) ∗ ln | F |

4 while Nruns > 0 do

5 Gcut, wtcut ← RandContr(G, k) /* get a random k-cut */

6 if | Gcltrs |≤ nbst then

7 Gcltrs ← (Gcltrs ∪Gcut) /* gather nbst best cuts */

/* replace worst (max. weight) cut with Gcut */

8 else if wt < maxWcltrs then

9 Grep ← G ∈ Gcltrs with wt > wtcut /* k-cut with min.

weight but > wtcut */

10 Replace Grep in Gcltrs with Gcut

11 Nruns ← Nruns − 1

12 return Gcltrs

13 end

114 Chapter 3

Algorithm 3.5: Algorithm for the k-cut based VMF-PC.

/* VMF-FG, MFVi network and # of best k-cuts */

Input : G = (F ,L), GI = (N,E), cap, nbst

/* VMF placement and chaining mapping */

Output : α, γ
Initialize: used res, α, γ

1 Ccpts ← ConccCompts(G) ; /* all connected components of G */

2 for C in Ccpts do

3 Calculate kmin, kmax values
4 for k in [kmin, kmax] do
5 (Fcuts, Lcuts) = NbstKcut(C, k, nbst) /* get nbst best k-cuts

*/

6 for (Fcut,Lcut) in (Fcuts, Lcuts) do

7 PC of cluster (Fcut,Lcut) using Alg. 3.2
8 if PC successful then
9 Chain cluster (Fcut,Lcut) with other VMFs

10 If cluster chaining successful, update α, γ, used res and
break

11 break loop if C is PC’d

12 If C still not PC’d, stop the algorithm

/* All connected components have been PC’ed */

13 Update cap using used res

On Decomposition and Deployment of Virtualized Media Services 115

3.5 Evaluation

In this section, we evaluate the impact of VMF-FG decomposition on media

service deployment and evaluate the performance of the proposed VMF-PC

algorithm. First, the given VMF-FG is decomposed using the proposed

VMF-FG decomposition procedure for a given M and then the resulting

VMF-FG is deployed using either of the two VMF-PC algorithms and its

performance is evaluated. The evaluation is done in terms of four metrics (i)

acceptance ratio, (ii) resource reservation, (iii) resource utilization, and (iv)

end-to-end hops latency. The acceptance ratio gives a measure of how likely

a VMF-FG can be deployed on a given MFVi. The resource reservation in-

dicates the amount of compute and network resources that are expected to

be used by the PC algorithm to deploy the given set of VMF-FGs. Post-

deployment, the control values for VMFs vary, resulting in varying real-time

usage of resources, which is indicated by the resource utilization metric. The

end-to-end latency of the deployed VMF-FG is an important parameter in

live media production. This metric can be measured in terms of the number

of hops (server nodes) from a source VMF to a sink VMF in the deployed

VMF-FG. As the number of hops increases, the end-to-end is expected to

increase and vice versa.

Next, we explain the simulation settings used to perform the evaluations.

3.5.1 Simulation settings

The MFVi physical network considered for the evaluation is fat-tree data

center topology. The topology consists of κ pods, where each pod has (κ/2)2

server nodes, κ/2 access layer switches, and κ/2 aggregate layer switches and

the core layer contains (κ/2)2 switches. The total number of server nodes

in the topology is κ3/4. Fig. 3.13 shows a data center in fat-tree topology

with four pods (κ = 4), each pod containing two aggregate switches, two

edge switches, and four server nodes whereas the core layer contains four

switches.

The parameters and their corresponding values (range) for media service

requests, MFVi, and VMFs are listed in Table 3.4. The formats of the

video streams are HD and UHD with resolutions 1920x1080 and 3840x2160,

respectively, and a refresh rate of 30fps. The sub-sampling assumed here is

4:2:2 where each sample is encoded with 10 bits. Each server node carries

24 CPU cores and each VMF (un-decomposed) consumes 6 cores per 1000

Mbps of the input bandwidth. The physical network is based on devices

with 10GbE interfaces. The VMF-FG decomposition algorithm and both

VMF-PC algorithms are written in Python and we have used the networkx

116 Chapter 3

core

aggregation

edge

pod 0 pod 1 pod 2 pod 3

Figure 3.13: Fat-tree topology of a data center with κ = 4 pods.

package wherever necessary. We use an Intel Xeon machine @2.40GHz and

12GB RAM to carry out the simulations. Each experiment is repeated ten

times and the corresponding mean and standard deviation are reported.

For each media service request, we select one VMF-FG from a set of three

VMF-FGs shown in Fig. 3.14.

ns-red dst0src0

G
1

chrm-

key pip

sclsrc2

dst0src1

src0

G
2

dst0src0

G
3

ns-red : noise reduction

clr-corr : color correction𝛾-corr : gamma correction

vqa: video quality assessment

chrm-key : chroma-keying

pip : picture-in-picture

scl : video scaler

brg-adj : brightness adjustment

clr-corr 𝛾-corr

vqa dst1

vqa

brt-adj

Figure 3.14: Set of VMF-FGs used in the evaluation.

3.5.2 Acceptance ratio

In this evaluation, we report the average acceptance ratio of media service

requests for deployment on a small data center topology with κ = 4. The

arrival of requests is modeled as a Poisson process with an average arrival

On Decomposition and Deployment of Virtualized Media Services 117

Table 3.4: Default values/range of various parameters involved in the simulation
experiments.

Parameter Value or range
κ 4, 8
Request arrival rate
(Poisson)

3/(100 units)

Request lifetime (Ex-
ponential)

1000 units

CPU/VMF/bw 6 cores/(1000 Mbps)
Video resolution 1920x1080p30
Frame rate 30fps
CPU/node 24 cores
Ph. link BW 10Gbps

rate of 3 requests per 100 time units (tu) and the request lifetime is expo-

nentially distributed with an average of 1000 tu; it is the average time a

media service is deployed on the MFVi. A media service request is deemed

accepted if its VMF-FG has been deployed successfully, i.e., all the VMFs

have been assigned to server nodes and the virtual links are mapped to

physical paths in the MFVi network. Acceptance ratio at time t is defined

as the ratio of the total number of requests accepted until time t to the total

number of requests that have arrived until t.

The acceptance ratio variation for NFPC and k-cutPC has been shown in

Fig. 3.15 (a) and Fig. 3.15 (b), respectively. Also, to show the impact of

VMF-FG decomposition, the acceptance ratio variation has been plotted

for M = 4 and M = 16. Both in Fig. 3.15 (a) and Fig. 3.15 (b), roughly

acceptance ratio decreases with time as the total number of deployed me-

dia services increases and the amount of available physical resources for the

newly arriving requests decreases. It can be clearly observed from the plots

that the acceptance ratio increases when M increases.

3.5.3 Resource reservation

Here, we report the physical resources reserved by the VMF-PC algorithm

when deploying a set of media service requests on a bigger MFVi network

in fat-tree topology, with κ = 8. The total amount of resources present

in this topology is sufficient to deploy fifty media service requests. Fig.

3.16 (a) shows the total number of server nodes reserved by the NFPC and

k-cutPC algorithms when deploying fifty requests with decomposition pa-

rameter M = 1, 4, 16. The total number of server nodes used by the NFPC

algorithm is slightly less compared to the k-cutPC algorithm. This ineffi-

118 Chapter 3

0 10 20 30 40 50
Time units (x1000)

0.75

0.80

0.85

0.90

0.95

1.00

Ac
ce

pt
an

ce
 ra

tio

M=1
M=4
M=16

0 10 20 30 40 50
Time units (x1000)

0.75

0.80

0.85

0.90

0.95

1.00

Ac
ce

pt
an

ce
 ra

tio

(a)

(b)

M=1
M=4
M=16

Figure 3.15: Acceptance ratio variation over time for the deployment of 50
requests on the MFVi with data center topology κ = 4 (16 server-nodes) for (a)

NFPC and (b) k-cutPC algorithms.

ciency in k-cutPC is because the placement is carried out at the VMF cluster

level whereas the NFPC algorithm carries out placement at the VMF level.

Another observation is the reduction in the number of used server nodes

Nsrv for both VMF-PC algorithms with increasing M . For instance, when

M is increased to sixteen from one, Nsrv decreases by about 20% for both

NFPC and k-cutPC. Therefore, VMF-FG decomposition results in better

consolidation of VMFs on the server nodes. Fig. 3.16 (b) shows the total

number of physical links Nlnks reserved for both the VMF-PC algorithms.

Similar to Fig. 3.16 (a), the NFPC algorithm performs a bit better than

the k-cutPC algorithm because of sequential PC in NFPC as opposed to

the cluster level PC in k-cutPC. Here, an increasing decomposition does not

significantly affect the number of reserved physical links.

3.5.4 Resource utilization

After the deployment of a media service on the MFVi network, the media

traffic is processed by the VMFs. Based on the traffic and control signal

values, the physical resource usage of the media service can vary. Here we

report the mean and worst -case resource utilization by the already deployed

media services. The mean resource utilization of a deployed media service

is averaged over the resource utilization values corresponding to all control

On Decomposition and Deployment of Virtualized Media Services 119

1 4 16
M

0

20

40

60
Re

se
rv

ed
 se

rv
er

 n
od

es

 (N
sr
v)

NFPC
k-cutPC

1 4 16
M

0

50

100

150

200

250

300

Re
se

rv
ed

 p
hy

. l
in

ks

 (N
ln
ks

)

(a)

(b)

NFPC
k-cutPC

Figure 3.16: Variation of resource reservation with M for 50 requests on a data
center topology with 128 server-nodes (κ = 8). (a) Total reserved server nodes

and (b) total reserved physical links.

signal values, whereas the worst-case utilization refers to the minimum re-

source utilization value corresponding to a particular control signal value

for that media service.

Fig. 3.17 (a) shows both the mean case and the worst-cast normalized CPU

usage for the NFPC and k-cutPC algorithms. As expected, the CPU uti-

lization is better for NFPC compared to k-cutPC because of better VMF

consolidation in NFPC, which further improves with the increasing value of

M resulting in the better CPU utilization for the worst case and the mean

case for both VMF-PC algorithms.

In addition to the CPU utilization, inter-node bandwidth usage is also a

useful parameter to compare VMF-PC algorithms. Fig. 3.17 (b) shows

the mean and worst case bandwidth (in Gbps) consumed by the deployed

media services for both VMF-PC algorithms. It is evident from the plots

that the total bandwidth utilized by k-cutPC is less than with NFPC. Since

k-cutPC attempts the deployment of a partitioned VMF-FG where inter

VMF-cluster bandwidth is minimized resulting in lesser bandwidth utiliza-

tion than NFPC. Again, with increasing M , the bandwidth utilization of

the deployed media services is reduced as the chances of neighbouring VMF

placed on the same node increases with M .

120 Chapter 3

1 4 16
M

0.0

0.2

0.4

0.6

0.8

1.0

C
P
U

 u
s
a
g
e

mean-NFPC
wrst-NFPC
mean-kcutPC
wrst-kcutPC

1 4 16
M

0

50

100

150

T
o
ta

l
B

W
 u

s
a
g
e

(G
b
p
s
)

(a)

(b)

mean-NFPC
wrst-NFPC
mean-kcutPC
wrst-kcutPC

Figure 3.17: Variation of resource utilization with M for 50 requests on a data
center topology with 128 server-nodes (κ = 8). (a) Normalized CPU utilization

and (b) Total inter-node bandwidth utilization.

On Decomposition and Deployment of Virtualized Media Services 121

3.5.5 End-to-end Hops

For a media service, the end-to-end latency is an important parameter that

can be used to check if the timing requirement of a media service is met.

Since in this section we only want to highlight the impact of VMF-FG

decomposition on end-to-end delay, we use the number of hops along the

longest path in VMF-FG as a metric instead of end-to-end delay. A stricter

analysis for end-to-end delay requires packet scheduling of media streams

on a time-sensitive network but it is out of the scope of this paper. As the

impact of VMF-PC algorithm is different for different VMF-FG, we evaluate

end-to-end hops separately for each VMF-FG. Fig. 3.18 (a), (b) and (c)

shows average end-to-end hops for the VMF-FGs shown in Fig. 3.14. The

NFPC algorithm results in poorer performance, i.e, more end-to-end hops

for all VMF-FGs and decomposition parameters due to the BFS nature of

the algorithm while this phenomenon is attenuated in k-cutPC due to the

cluster-level VMF PC. It is expected that end-to-end latency should reduce

with increasing M as more and more neighboring VNF get placed on the

same server node. However, for G3 the total end-to-end hops do not increase

with M . This can be attributed to the decomposition of a specific VMF

in the VMF-FG and also then its decomposition procedure. Here, it is due

to the presence of the vqa VMF in the G3 whose decomposition results in

increasing the end-to-end hops (Fig. 3.14).

3.6 Conclusion

IP networking for media transport and general-purpose compute platforms

for media production could help broadcasters to reduce the total expendi-

tures along with several other benefits. Thus the adoption of COTS plat-

forms is expected to rise in the future. The success of the adoption largely

depends on the efficiency of resource allocation algorithms. To improve the

resource allocation efficiency, we have proposed a procedure for VMF-FG

decomposition that can be used to transform a VMF-FG to an equivalent

but lightweight VMF-FG. For media service deployment, we present two

different VMF-PC algorithms: NFPC and k-cutPC aimed at improving the

node and network resource usage, respectively. The evaluation compares

the two VMF-PC algorithms in terms of four different metrics. The evalua-

tion shows a significant improvement as a result of VMF-FG decomposition

in terms of these metrics.

MFV requires the transportation of uncompressed media streams between

VMFs in real-time. By scheduling packet transmissions for the media

streams on a time-sensitive network, the timing metrics (end-to-end de-

122 Chapter 3

1 4 16
M

0

1

2

3

Ave
rag

e h
ops

NFPC
kcutPC

1 4 16
M

0

1

2

3

Ave
rag

e h
ops

NFPC
kcutPC

1 4 16
M

0

1

2

3

Ave
rag

e h
ops

NFPC
kcutPC

Figure 3.18: Variation of end-to-end hops for (a) G1, (b) G2 and (c) G3 on a
data center topology with 128 server-nodes (k = 8).

On Decomposition and Deployment of Virtualized Media Services 123

lay and jitter) can be bounded. The problem of VMF-FG deployment with

scheduling will be addressed in our future research. Moreover, we plan to in-

vestigate the performance of media services implemented using open-source

media processing frameworks. Later, the setup shall be used to implement

the proposed VMF-FG decomposition procedure.

3.7 Acknowledgments

This research was (partially) funded by the Flemish FWO SBO S003921N

VERI-END.com (Verifiable and elastic end-to-end communication infras-

tructures for private professional environments) project.

124 Chapter 3

References

[1] M. Fremeije. The Rising Need for Media Function Virtualization. Tech-

nical report, RedHat, 02 2018.

[2] The Road to COTS and the Cloud for real-time broadcast production.

Technical report, Nevion, 01 2018.

[3] B. Research and Development. Compositing and Mixing Video in

the Browser, 2018. Available from: https://www.bbc.co.uk/rd/blog/

2017-07-compositing-mixing-video-browser.

[4] Grass Valley. Agile Media Processing Platform.

[5] J. G. Herrera and J. F. Botero. Resource allocation in NFV: A com-

prehensive survey. IEEE Transactions on Network and Service Man-

agement, 13(3):518–532, 2016.

[6] RP 2110-23:2019 - SMPTE Recommended Practice - Single Video

Essence Transport over Multiple ST 2110-20 Streams. RP 2110-

23:2019, pages 1–27, 2020.

[7] G. P. Sharma, D. Colle, W. Tavernier, and M. Pickavet. Improving

Resource Utilization with Virtual Media Function Decomposition. In

2020 Fourth International Conference on Multimedia Computing, Net-

working and Applications (MCNA), pages 31–37. IEEE, 2020.

[8] T. Fautier. How OTT Services Can Match the Quality of

Broadcast. SMPTE Motion Imaging Journal, 129(3):16–25, 2020.

doi:10.5594/JMI.2020.2969763.

[9] Y. Reznik, J. Cenzano, and B. Zhang. Transitioning Broadcast to

Cloud. Applied Sciences, 11(2):503, 2021.

[10] H. Koumaras, C. Sakkas, M. A. Kourtis, C. Xilouris, V. Koumaras, and

G. Gardikis. Enabling agile video transcoding over SDN/NFV-enabled

networks. In 2016 International Conference on Telecommunications

and Multimedia (TEMU), pages 1–5. IEEE, 2016.

[11] T. Kojima, J. J. Stone, J. Chen, and P. N. Gardiner. A Practical

Approach to IP Live Production. In SMPTE 2014 Annual Technical

Conference Exhibition, pages 1–16, 2014.

[12] A. Kovalick. Design elements for core ip media infrastructures. SMPTE

Motion Imaging Journal, 125(2):16–23, 2016.

https://www.bbc.co.uk/rd/blog/2017-07-compositing-mixing-video-browser
https://www.bbc.co.uk/rd/blog/2017-07-compositing-mixing-video-browser

On Decomposition and Deployment of Virtualized Media Services 125

[13] Grass Valley Technology Behind the World’s Largest SMPTE 2110 IP

Network at BBC Cymru Wales New Central Square HQ. https://www.

grassvalley.com/press-releases/2020/. Accessed: 2021-05-22.

[14] ST 2110-10:2017 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: System Timing and Definitions. ST 2110-10:2017,

pages 1–17, 2017.

[15] ST 2110-20:2017 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: Uncompressed Active Video. ST 2110-20:2017, pages

1–22, 2017.

[16] ST 2110-30:2017 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: PCM Digital Audio. ST 2110-30:2017, pages 1–9,

2017.

[17] ST 2110-40:2018 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: SMPTE ST 291-1 Ancillary Data. ST 2110-40:2018,

pages 1–8, 2018.

[18] ST 2022-6:2012 - SMPTE Standard - Transport of High Bit Rate Media

Signals over IP Networks (HBRMT). ST 2022-6:2012, pages 1–16,

2012.

[19] ST 2110-21:2017 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: Traffic Shaping and Delivery Timing for Video. ST

2110-21:2017, pages 1–27, 2017.

[20] ST 2110-31:2018 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: AES3 Transparent Transport. ST 2110-31:2017,

2018.

[21] D. Luzuriaga, C.-H. Lung, and M. Funmilayo. Software-Based Video–

Audio Production Mixer via an IP Network. IEEE Access, 8:11456–

11468, 2020.

[22] B. Research and Development. High Speed Net-

working: Open Sourcing our Kernel Bypass Work,

2018. Available from: https://www.bbc.co.uk/rd/blog/

2018-04-high-speed-networking-open-source-kernel-bypass.

[23] Broadcast Video Infrastructure Implementation Using FPGAs. Tech-

nical report, Altera, 03 2007.

[24] V. Bruns, T. Richter, B. Ahmed, J. Keinert, and S. Föel. Decoding

JPEG XS on a GPU. In 2018 Picture Coding Symposium (PCS),

pages 111–115. IEEE, 2018.

https://www.grassvalley.com/press-releases/2020/
https://www.grassvalley.com/press-releases/2020/
https://www.bbc.co.uk/rd/blog/2018-04-high-speed-networking-open-source-kernel-bypass
https://www.bbc.co.uk/rd/blog/2018-04-high-speed-networking-open-source-kernel-bypass

126 Chapter 3

[25] B. Research and Development. The IP network behind the R&D Com-

monwealth Games 2014 Showcase, 2014. Available from: https://www.

bbc.co.uk/rd/blog/2014-07-commonwealth-games-showcase-network.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to algorithms. MIT press, 2009.

[27] A. Gupta, E. Lee, and J. Li. The Karger-Stein Algorithm is

Optimal for k-Cut. In Proceedings of the 52nd Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2020, page

473–484, New York, NY, USA, 2020. Association for Computing Ma-

chinery. Available from: https://doi.org/10.1145/3357713.3384285,

doi:10.1145/3357713.3384285.

https://www.bbc.co.uk/rd/blog/2014-07-commonwealth-games-showcase-network
https://www.bbc.co.uk/rd/blog/2014-07-commonwealth-games-showcase-network
https://doi.org/10.1145/3357713.3384285

4
Scheduling for Media Function

Virtualization

In the previous chapter, we presented two VMF-PC algorithms for the de-

ployment of media services. The VMF chaining process in these algorithms

only takes in account the bandwidth of network links. Therefore, the traf-

fic between any two neighbouring VMFs can be subjected to packet delays

and losses due to congestion in the network. However, producing broadcast-

quality content requires zero packet loss along with bounded latency and jitter

between all neighbouring VMFs.

In order to guarantee zero packet loss and bounded delays, media service

deployment needs to include packet scheduling between neighbouring VMFs.

To this end, this chapter first formulates the problem of VMF-FG scheduling

and attempts to solve it using a heuristic algorithm.

⋆ ⋆ ⋆

G.P. Sharma, W. Tavernier, D. Colle, and M. Pickavet

Published in Future Internet, vol. 13, no. 7, 2021.

Abstract Broadcasters are building studio architectures based on Commercial-

off-the-shelf (COTS) IT hardware because of advantages such as cost-reduction,

ease of management and upgradation. Media Function Virtualization (MFV)

128 Chapter 4

leverages IP for media transport to processing media streams using Virtual

Media Functions (VMFs) running on general-purpose compute (e.g., Intel

Xeon servers) platforms. Media service deployment in an MFV environ-

ment entails solving the VMF-FG scheduling problem to ensure the required

broadcast-quality guarantees. In this paper, we formulate the VMF-FG

scheduling problem and propose a greedy-based algorithm to solve it. The

evaluation of the algorithm is carried out in terms of the end-to-end de-

lay and the VMF queuing delay. Moreover, the importance of VMF-FG

decomposition in upgradation to higher-quality formats is also highlighted.

4.1 Introduction

The rising demand for new TV broadcast services, e.g., Over-the-Top (OTT)

and high-quality content forces broadcasters to regularly upgrade studio in-

frastructure, thus resulting in high expenditures [1]. The cut-throat compe-

tition further accentuates the challenge of keeping the business viable. This

challenge has forced broadcasters to seek alternative studio architectures for

broadcast media production.

For several decades, Serial Digital Interface (SDI) has been the most pre-

ferred solution for media transport within studios because of its robust and

reliable performance [2]. However, upgrading SDI-based infrastructure to

support higher quality media, e.g., Full High Definition (FHD) and Ultra

High Definition (UHD) videos, requires a high-speed SDI routing matrix-

thus rendering the upgradation phase quite expensive and complicated [3].

As an alternative to SDI, packet-switched media transport architectures are

gaining the attention of broadcasters. Internet Protocol (IP) is a versatile

solution to interconnect devices on the Internet as well as private networks.

Due to the decades of evolution in IP, the speed of packet forwarding de-

vices has grown manifold. For instance, network cards and switches with

Gbit/sec Ethernet (10GbE) interfaces are now commonly available. As a

result of this evolution in IP, all-IP studio architectures are being explored

to transport uncompressed media streams across studios [2].

A complementary transition is happening in the media processing domain

to move from bespoke hardware towards Commercial-off-the-shelf IT hard-

ware (e.g., Intel Xeon Servers) running software applications to process

media streams [4]. COTS hardware being inexpensive and ubiquitous, the

upgrade of media processing infrastructure is more economical compared to

the specialized hardware boxes.

The progress made on these two fronts– COTS hardware exploitation for

(i) media transport and (ii) media processing is crucial in accelerating the

adoption of Media Function Virtualization (MFV). Analogous to Network

Scheduling for Media Function Virtualization 129

Function Virtualization (NFV), where network processing is accomplished

via software deployed on COTS hardware, MFV aims to implement Media

Functions (MFs) as software [4], [5]. Despite its advantages, MFV faces a

unique set of challenges that are not relevant to NFV. Broadcast production

quality standards are quite stricter than networking services, for instance,

loss of a packet or even delay in the arrival of a packet can ruin the viewer

experience. Deterministic Networking (DetNet) can be exploited to provide

end-to-end timing guarantees for the transport of media streams [6]. Specif-

ically, DetNet mechanism such as CSQF allows scheduling packet transmis-

sions along the network path that can fulfill the real-time requirements

needed from the underlying network [7].

In an MFV environment, media services are represented using a directed

graph referred to as Virtual Media Function Forwarding Graph (VMF-FG).

The deployment of a media service entails a mapping of the VMF-FG to the

infrastructure, which is referred to as VMF Placement and Chaining (VMF-

PC) problem. The naive VMF-PC algorithm assumes best-effort networking

for media transport between VMFs thus does not provide any guarantee on

metrics such as packet loss, end-to-end delay or jitter. Over-provisioning

bandwidth for media streams could result in an improvement in these met-

rics, yet deterministic performance cannot be guaranteed. Therefore, the

VMF-FG mapping process needs to incorporate scheduling of VMFs and

virtual links to ensure broadcast-quality guarantees.

In this paper, we first formulate the VMF-FG scheduling problem and then

propose a greedy heuristic to solve it. The performance of the heuristic is

evaluated by conducting numerical experiments.

The rest of the paper 1 is structured as follows. The related works are pre-

sented in section 4.2. The problem statement and the proposed heuristic

are described in section 4.3. The evaluation setup and results are described

in section 4.4. Finally, our conclusions and final remarks are summarized

in section 4.5.

4.2 Related Works

Broadcast media production is undergoing a massive transformation pro-

pelled by IP and virtualization technologies. The migration to IP-based

media transport from SDI is foreseen to accelerate in the near future. The

interest in IP among broadcasters is emphasized by the fact that the SMPTE

has released a suite of ST 2110 standards [8–10]. These standards describe

how different media essences, i.e., video, audio, and ancillary data, can be

1The sections in the paper on the MFV architecture and CSQF are contained in
sections 1.4.2 and 1.5.1 of the introduction chapter, respectively.

130 Chapter 4

transported independently using IP. Many all-IP broadcast studios are now

being built based on these standards.

A live TV broadcast based on IP was produced by the British Broadcast

Corporation (BBC) during the Glasgow 2014 Commonwealth Games [11].

UHD streams captured by multiple cameras in several competition venues

were delivered to the software-defined production facility. The final pro-

gram, after HEVC, was also delivered over IP. Likewise, a new broadcast

facility in Wales, UK has been built based on IP.

The Canadian public broadcaster: CBC/Radio-Canada has constructed an

all-IP facility responsible for over 100 TV, radio and online programming

in Montreal, Canada [12]. The switching network is based on leaf-spine

topology with 100Gbps links. The network can support real-time multi-

cast traffic along with redundancy for media streams. The software-defined

network ensures that media streams can be distributed uniformly over the

topology. The flexibility offered by IP is crucial for COTS-based media pro-

cessing, as discussed next.

D. Luzuriaga et al. have also demonstrated the PoC for a vision mixer based

on open-source software tools (e.g., OBS studio and KX studio) running on

COTS hardware platform [13]. It is presented a low-cost replacement for

a specialized hardware production system. The evaluation shows that the

vision mixing setup has an acceptable delay of about 1.4s, which is reason-

able for professional (non-live) media production scenarios. Furthermore,

live media mixing based on software has been demonstrated by the BBC

partnered with Isotama [14]. To operate the setup in real-time and control

the final live output, the software pipeline is interfaced with a browser-based

operation tool.

Broadcast media services in an MFV environment can be represented using

VMF-FGs. In our previous work, we proposed a VMF-FG decomposition

algorithm [15]. The VMF-FG decomposition algorithm processes an input

VMF-FG to produce an optimized VMF-FG that consumes fewer resources.

Recently, some work has been done to address the joint routing and schedul-

ing problem for DetNets [16]. The problem is formulated as an Integer

Linear Program (ILP) and two methods– column generation and dynamic

programming, are proposed to maximize traffic acceptance. An ultra-fast

and scalable greedy heuristic is also proposed that is capable of solving the

problem with a small penalty. In this paper, the DetNet requests are sim-

ply two endpoints (source and sink). The problem of VMF-FG scheduling

assumes a timing relationship between different virtual links. To the best of

our knowledge, there has not been any study on the scheduling of VMF-FGs

in order to reliably deploy media services. This work aims to first formulate

the VMF-FG scheduling problem and also proposes a heuristic to solve it.

Scheduling for Media Function Virtualization 131

4.3 System Model and Algorithm

An upper limit on timing metrics is required to ensure that broadcast-

quality is maintained. To this end, media streams between VMFs can be

scheduled using a queue scheduling mechanism such as CSQF. This shall

ensure that each VMF receives its input frames within the required time

window so that the output frame is produced and then timely received at

the downstream VMFs.

Next, we describe the VMF-FG scheduling problem and propose a greedy-

based heuristic to solve it.

Table 4.1: Description of the notations used for different parameters and
variables involved in the system model.

Notation Description
G = (F ,L) VMF-FG representation of a media service,

where F and L are the set of VMF and virtual
links, respectively.

GI = (N,E) Directed graph representation of the MFVi
network infrastructure, where N is the set of
nodes and E is the set of physical links be-
tween the nodes.

Rframe Number of frames transmitted per second on
a media stream.

Tc Cycle time.
Nc Set of all server nodes (Nc ⊂ N) , i.e., nodes

with compute resources.
C The set of all cycles in a hypercycle.
bwni,nj ,c Available bandwidth (in bytes) on physical

link (ni, nj) ∈ E during cycle c ∈ C.
α The variable denotes the node and core assign-

ment of VMFs.
γ The variable denotes the physical path assign-

ment of virtual links.
ω The variable denotes the schedule assignment

of virtual links.

4.3.1 System Model

A media service s is represented using a DAG denoted by G = (F ,L), where

F is the set of VMFs and L is the set of virtual links. The CPU requirement

of VMF f is denoted by cpuf and the bandwidth requirement, in bytes per

hypercycle, on a virtual link is denoted by bwfi,fj . Here, the hypercycle time

132 Chapter 4

is equal to the frame interval, i.e., |C| ∗ Tc = Tframe = 1/Rframe. Thus,

bandwidth requirement per hypercycle for (fi, fj) is equal to the frame

size, e.g., an FHD (1920x1080 or 2K) @30fps video stream with YCbCr

color space and 4:2:2 sub-sampling, the bandwidth requirement per frame

is 5184000B (5MB).

The MFVi network is also denoted with a directed graph GI = (N,E),

where N and E denote the set of physical nodes and links, respectively. The

subset of physical nodes includes server nodes (Nc ⊂ N) with computational

resources to host VMFs. The available CPU resources on a node n ∈ Nc

is denoted by cpun and bandwidth in cycle c on physical link (ni, nj) is

denoted by bwc
ni,nj

.

Deploying a media service in an MFV environment involves mapping the

service’s VMF-FG onto the MFVi network. In the problem of VMF-FG

scheduling, given a VMF-FG G and MFVi GI , (i) the VMFs should be

assigned to the server nodes (α : F → Nc), (ii) the virtual links should be

mapped to the physical paths (γ : L → Pths) and (iii) the virtual links

should also be assigned a packet transmission schedule (ω : L → R
|C|). As

shown in Fig. 4.1, the CO block has a view of the MFVi network (GI); the

scheduler in the CO block takes VMF-FG G and GI as input and solves the

VMF-FG scheduling to generate a solution. The solution (α, γ and ω) is

then used to configure MFVi, e.g., assign VMFs to servers, segment routing

configuration for CSQF schedule, etc. Table 4.1 lists the various parameters

and variables involved in the system model.

4.3.2 VMF-FG Scheduling Algorithm

The VMF-FG scheduling algorithm is based on the Breadth-First Search

(BFS) algorithm as shown in Alg. 4.1. The VMF-FG scheduling variables

are initialized and the VMF-FG traversal starts from a sink node. For

each (already placed) VMF fdw ∈ DwstrNbrs(F , f) downstream to f , the

scheduling of VMF f and the associated virtual link (f, fdw) is iteratively

attempted using procedure VlinkSch. The tentative node to place f is se-

lected using the Next-fit algorithm; starting from the same node where fdw
is placed, i.e., α[fdw], then the next node and so on (α[fdw] + δn). The

neighbours of f are then added to the VMF queue. Next, we describe the

procedure for virtual link scheduling in detail.

The procedure to schedule virtual links is presented in Alg. 4.2. The pro-

cedure VlinkSch takes as input the bandwidth requirement bwfi,fj of the

virtual link (fi, fj), the server nodes for the potential placement of fi and fj :

n1 and n2, the current placement (α), chaining (γ) and link schedule (ω).

As illustrated in Fig. 4.2, the input schedule at VMF fj must end dproc(fj)

before fj starts transmitting the processed (output) frame. Next, procedure

Scheduling for Media Function Virtualization 133

MFV CO

MFVi G
I

VMF-FG: G f
0

f
2

f
1

f
3

f
0

f
1 f

2
f
3

VMF placement (𝜶)

Virtual Link chaining (𝛾)

Virtual Link scheduling (𝝎)

VMF-FG

Scheduling solution

Figure 4.1: An overview of the VMF-FG scheduling problem.

134 Chapter 4

PthSchGrd (discussed next) is called to greedily allocate bwfi,fj among |C|

cycles between tend and tend − Tc + 1. The feasible path p, the associated

schedule s along with the timings of the start and end cycles of s are re-

turned by PthSchGrd. In case a feasible path/schedule does not exist, the

procedure is terminated by returning ϕ. Else, VMF timings are updated and

a schedule for fi is generated using procedure CpuSch. As shown in Fig. 4.2,

the fi’s output timings are obtained by delaying fj ’s input timings by the

path delay (PthDel(p)). CpuSch returns an available CPU core on n1 where

fi can be scheduled between time interval (T out
start[fi]− dproc(fi), T

out
start[fi]).

Before returning, the placement, chaining and scheduling variables are up-

dated.

Procedure PthSchGrd iterates over all the paths between n1 and n2 and

pth

PthDel(pth)

t

Figure 4.2: Illustration for the relationship between different VMF timing
schedules.

returns with a feasible schedule, if it exists. More precisely, for path p, first

a greedy schedule is allocated for the destination link ((p[−2], p[−1])) and it

is checked whether it is compatible with the other links in p using procedure

PthSch. If not, ϕ is returned; otherwise, PthSch returns the packet schedule

for the whole path p. The current path p, the associated schedule s, and

the start and end timings: tstart, tend of s are returned.

Scheduling for Media Function Virtualization 135

Algorithm 4.1: Simplified pseudo-code for VMF-FG scheduling
algorithm; a given VMF-FG G = (F ,L) is to be scheduled on the
MFVi network GI = (N,E)

1 α, γ, ω ← φ, φ, φ;
2 for vmfsnk ∈ Fsnk do

3 Qvmf ← {vmfsnk} ; /* initializing the VMF queue for BFS */

4 while |Qvmf | > 0 do

5 f ← Qvmf .dequeue();
/* schedule f and vlink (f, fdw) */

6 for fdw in DwstrNbrs(G, f) do

7 δn← 0;
8 while VlinkSch(f ,fdw,bwf,fdw , α[fdw] + δn, α[fdw], α, γ, ω)

do

9 δn← δn+ 1;

/* enqueue the upstream neighbours */

10 for nbr in UpstrNbrs(G, f) do

11 Qvmf .enqueue(nbr)

Algorithm 4.2: Procedure for allocating a schedule for a virtual
link
/* VMF input output timings */

Global : T out
start, T

out
end, T

in
start, T

in
end

1 Procedure VlinkSch(fi, fj , bwfi,fj , n1, n2, α, γ, ω):
2 tend ← T out

start[fj]− dproc(fj);

3 p, s, tinstart, t
in
end ← PthSchGrd(bwfi,fj , n1, n2, ω, tend);

4 if p == φ then

5 return False;

6 else

7 T in
start[fj], T

in
end[fj] ← tinstart, t

in
end;

8 T out
start[fi], T

end
in [fi] ← tinstart− PthDel(p), tinend− PthDel(p);

/* get a core on n1 for fi scheduling */

9 core← CpuSch(fi, n1, T
out
start[fi]− dproc(fi), T

out
start[fi]);

10 if core == φ then

11 return False

12 α[fi], γ[(fi, fj)], ω[(fi, fj)]← (n1, core), p, s;
13 return True;

14 end

136 Chapter 4

Algorithm 4.3: Procedure for chaining and scheduling a path.

Global : |C|
/* Hypercycle length */

1 Procedure PthSchGrd(bw, n1, n2, ω, tend):

2 t̄end ← tend%|C|;
3 for p in Pths(n1, n2) do

4 for ∆t in [0, |C|] do
5 t̄new

end ← (t̄end −∆t)%|C|;
6 slnk, tstart, tend ← GrdAlloc(bw, ω, p[−2], p[−1], t̄new

end);
7 if slnk ̸= φ then

8 s← PthSch(slnk, p);
9 if s ̸= φ then

10 return p, s, tstart, tend;

11 return φ, φ, φ, φ;

12 end

4.4 Evaluations

In this section, we perform a few numerical experiments to evaluate the

performance of our VMF-FG scheduling algorithm. First, we describe the

setup used for evaluation. Next, the performance of our algorithm is evalu-

ated in terms of the VMF-FG’s delays. We also present the impact of media

quality formats on resource utilization.

4.4.1 Evaluation setup

The MFVi physical network considered for the evaluation is the fat-tree

data center topology because of its ease of management and flexibility to

scale for high-quality media formats [2]. The topology consists of κ pods,

where each pod has (κ/2)2 server nodes, κ/2 access layer switches, and κ/2

aggregate layer switches and the core layer contains (κ/2)2 switches. The

total number of server nodes in the topology is κ3/4. We assume κ = 8, i.e,

there are a total of 128 servers, with each server node containing 20 cores.

All the devices (switches and server nodes) in the MFVi physical network

are equipped with 10GbE interfaces.

We assume the media service request is represented using a VMF-FG as the

one shown in Fig. 4.3 with 11 VMFs (and 6 endpoints) and 16 virtual links.

The VMF-FG is considered in three media formats– (i) HD @ 30 fps, (ii)

HD @ 60fps and (iii) FHD @ 30fps. The sub-sampling and sample encoding

of the VMF-FG are assumed to be 4:2:2 and 10 bits, respectively.

Scheduling for Media Function Virtualization 137

The other parameters and their corresponding values (range) for media

service requests, MFVi, and VMFs are listed in Table 4.2.

s
0

s
1

s
2

s
3

s
4

d
0

vmf
0

vmf
1

vmf
2

vmf
3

vmf
4

vmf
5

vmf
6

vmf
7

vmf
8

vmf
9

vmf
10

Figure 4.3: Illustration of the VMF-FG used for the evaluation.

Table 4.2: Default values/range of various parameters involved in the evaluation.

Parameter Value or range Units
Topology Fat-tree (κ = 8) -
Formats HD@30fps, HD@60fps,

FHD@30fps
-

CPU cores/node 20 -
Link bandwidth 10 Gbps
Cycle time (Tc) {100, 200, 300, 400} µs
VMF processing
delay

5 ms

Node (switch)
processing delay
(dni,nj

)

40 µs

Links delay (dn) 80 µs

4.4.2 End-to-end Delay

End-to-end delay is important for broadcast media services, especially for

live production scenarios. Here, we report the end-to-end (E2E) delay in

a VMF-FG, i.e., maximum delay among all the possible paths between the

VMF-FG’s sources and sinks. In Fig. 4.4 (a), we compare the average E2E

delay for different cycle time (Tc) values. It can be observed that the E2E

138 Chapter 4

delay increases with Tc. This results from the fact that the delay along the

physical paths corresponding to the virtual links increases with Tc as the

queuing delay in switches nodes increases.

We also report the E2E delay variation with M . The decomposition of a

VMF-FG leads to VMF decomposition which results in the reduction of

VMF processing delay. This results in the decreasing E2E VM-FG delay

with M .

The are various components of E2E delay. The contribution due to video

frame queuing is an important metric because it highlights the efficiency

of VMF-FG scheduling. Here, we define the average VMF Queuing delay

as the mean of VMF queuing delay in all the VMFs of the VMF-FG. The

smaller the value of the average VMF queuing delay is, the better is the

VMF-FG scheduling. The average queuing delay slightly decreases with

Tc as shown in Fig 4.4 (b). However, VMF-FG decomposition results in

increasing the average VMF queuing delay due to higher consolidation of

VMFs per node.

4.4.3 Impact of formats

Here, we report the impact of media formats on the performance of schedul-

ing algorithm. The format of media streams affects resource utilization ef-

ficiency. Fig. 4.5 compares the average numbers of cores used per node for

three different video formats. With no VMF-FG decomposition (M = 1),

the average core utilization decreases with higher-quality media format. The

network bandwidth increasingly becomes the bottleneck with an increase in

media quality thus fewer VMFs are placed on a node even if free CPU cores

are available on the node.

It can also be observed that VMF-FG decomposition improves the average

core utilization per node. By decomposing VMF-FG, bandwidth require-

ment per virtual link decreases thus increasing VMF consolidation per node.

4.5 Conclusion

The transition from specialized hardware to COTS IT infrastructure is tak-

ing place in broadcast studios, i.e., IP networking for media transport and

general-purpose compute for media processing. MFV proposes to utilize

COTS compute hardware to run media processing as VMFs that can be

chained together in the form of VMF-FGs. To ensure that broadcast-quality

guarantees in an MFV environment are met, it is important to not only map

VMFs and virtual links to the underlying MFVi but also to timely schedule

Scheduling for Media Function Virtualization 139

100 200 300 400
Tc

0

10,000

20,000

30,000

40,000

50,000

E2
E

de
la

y
(

s)

M=1, BFS
M=1, DFS
M=4, BFS
M=4, DFS
M=16, BFS
M=16, DFS

100 200 300 400
Tc

0

500

1000

1500

2000

2500

3000

VM
F

Qu
eu

in
g

de
la

y
(

s)

(a)

(b)

M=1, BFS
M=1, DFS
M=4, BFS
M=4, DFS
M=16, BFS
M=16, DFS

Figure 4.4: (a) The average E2E delay and (b) the average queuing delay versus
cycle time (Tc).

140 Chapter 4

HD @ 30fps HD @ 60fps FHD @30fps
Formats

0

5

10

15

20

25
Av

g.
co

re
s /

 no
de

 (m

ax
. 2

0)
M=1
M=4
M=16

Figure 4.5: Impact of media formats on resource utilization for different M .

them. To this end, we first formulated the VMF-FG scheduling problem.

We have then proposed a greedy-algorithm to find its solution. The eval-

uation of the algorithm shows an increase in the end-to-end delay with in-

creasing cycle time. We also highlighted the improvement in the end-to-end

delay with VMF-FG decomposition, particularly for high-quality formats.

The implementation of media services in an MFV environment with VMF-

FG scheduling can be a part of future work.

4.6 Acknowledgments

This research was (partially) funded by the Flemish FWO SBO S003921N

VERI-END.com (Verifiable and elastic end-to-end communication infras-

tructures for private professional environments) project.

Scheduling for Media Function Virtualization 141

References

[1] M. Fremeije. The Rising Need for Media Function Virtualization. Tech-

nical report, RedHat, 02 2018.

[2] T. Kojima, J. J. Stone, J. Chen, and P. N. Gardiner. A Practical

Approach to IP Live Production. In SMPTE 2014 Annual Technical

Conference Exhibition, pages 1–16, 2014.

[3] K. Paulsen. Prepping for the IP Transition. Technical report, Dell

EMC, 01 2017.

[4] The Road to COTS and the Cloud for real-time broadcast production.

Technical report, Nevion, 01 2018.

[5] J. G. Herrera and J. F. Botero. Resource allocation in NFV: A com-

prehensive survey. IEEE Transactions on Network and Service Man-

agement, 13(3):518–532, 2016.

[6] N. Finn, P. Thubert, B. Varga, and J. Farkas. Deterministic networking

architecture. draft-ietf-detnet-architecture-03 (work in progress), 2017.

[7] M. Chen, X. Geng, and Z. Li. Segment Routing (SR) Based Bounded

Latency. Internet Engineering Task Force, Internet-Draft draft-

chendetnet-sr-based-bounded-latency-00, 2018.

[8] ST 2110-10:2017 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: System Timing and Definitions. ST 2110-10:2017,

pages 1–17, 2017.

[9] ST 2110-20:2017 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: Uncompressed Active Video. ST 2110-20:2017, pages

1–22, 2017.

[10] ST 2110-30:2017 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: PCM Digital Audio. ST 2110-30:2017, pages 1–9,

2017.

[11] B. Research and Development. The IP network behind the R&D Com-

monwealth Games 2014 Showcase, 2014. Available from: https://www.

bbc.co.uk/rd/blog/2014-07-commonwealth-games-showcase-network.

[12] F. Poulin, P. Keroulas, S. Nyamweno, W. Vermost, P. Ferreira, and

I. Kostiukevych. How CBC/Radio-Canada Tested Media-over-IP De-

vices to Build its New Facility. SMPTE Motion Imaging Journal,

129(4):35–44, 2020.

https://www.bbc.co.uk/rd/blog/2014-07-commonwealth-games-showcase-network
https://www.bbc.co.uk/rd/blog/2014-07-commonwealth-games-showcase-network

142 Chapter 4

[13] D. Luzuriaga, C.-H. Lung, and M. Funmilayo. Software-Based Video–

Audio Production Mixer via an IP Network. IEEE Access, 8:11456–

11468, 2020.

[14] B. Research and Development. Compositing and Mixing Video in

the Browser, 2018. Available from: https://www.bbc.co.uk/rd/blog/

2017-07-compositing-mixing-video-browser.

[15] G. P. Sharma, D. Colle, W. Tavernier, and M. Pickavet. Improving

Resource Utilization with Virtual Media Function Decomposition. In

2020 Fourth International Conference on Multimedia Computing, Net-

working and Applications (MCNA), pages 31–37. IEEE, 2020.

[16] Joint routing and scheduling for large-scale deterministic IP networks.

Computer Communications, 165:33 – 42, 2021. Available from: http:

//www.sciencedirect.com/science/article/pii/S0140366420319642,

doi:https://doi.org/10.1016/j.comcom.2020.10.016.

https://www.bbc.co.uk/rd/blog/2017-07-compositing-mixing-video-browser
https://www.bbc.co.uk/rd/blog/2017-07-compositing-mixing-video-browser
http://www.sciencedirect.com/science/article/pii/S0140366420319642
http://www.sciencedirect.com/science/article/pii/S0140366420319642

5
Routing and Scheduling for 1+1

Protected DetNet flows

The VMF-FG scheduling algorithm in the previous chapter exploits CSQF,

a packet scheduling mechanism, to bound delays as well to prevent packet

losses due to congestion in network nodes. In addition to the congestion

in network, failures in the network can also cause packet losses. For many

mission critical applications, disruption in the flow for even a few millisec-

onds can be detrimental to the performance of the application. This can be

prevented by adding redundant paths between the communication endpoints

of the application. Therefore, a dedicated protection mechanism like 1+1

can ensure the communication between the endpoints continues in case of a

failure in one of the network paths.

This chapter addresses the 1+1 routing and scheduling problem that com-

bines 1+1 protection with packet scheduling to ensure high reliability along

with worst-case end-to-end guarantees.

⋆ ⋆ ⋆

G.P. Sharma, W. Tavernier, D. Colle, and M. Pickavet

Accepted in Computer Networks, 2022.

Abstract Deterministic Networking (DetNet) is attracting a lot of atten-

tion lately due to its ability to provide bounded latency and zero packet loss

144 Chapter 5

for time-sensitive applications. In this paper, we formulate the routing and

scheduling problem for 1+1 protected DetNet flows based on Cycle Speci-

fied Queuing and Forwarding (CSQF). The solution to this problem selects

two paths between the two endpoints of each service request and schedules

packet transmission on these paths meanwhile maximizing the accepted

traffic. We have modeled the problem using Integer Linear Programming

(ILP). We also propose two heuristic approaches: greedy and Tabu-search

(TS) that can perform 1+1 routing and scheduling for a large number of

requests in a reasonable time. Eventually, the performance of the ILP ap-

proach and heuristics is evaluated by performing simulation experiments.

The results highlight the scalability of the two heuristics as compared to

the ILP and superior performance of TS over greedy. The trade-off of cycle

time on traffic acceptance and end-to-end delay is also presented.

5.1 Introduction

A wide range of real-time and safety-critical applications, such as connected

cars, industrial control and media broadcasting, require deterministic per-

formance from the network [1]. Proprietary bus-based technologies have

been employed to build such networks that are currently hard to scale and

manage. Although, packet-based networks can offer best-effort service they

fail to provide any Quality of Service (QoS) guarantees. Non-deterministic

queuing delay in Ethernet switches can result in unbounded jitter and occa-

sional packet losses thus rendering traditional Ethernet networks incapable

of handling the above-mentioned applications. For instance, even a single

packet loss or excessive delay is not tolerable in TV broadcast production,

as it would be detrimental to the viewing experience.

To be able to support time-sensitive applications, the network is required

to provide a strict guarantee on latency, packet loss and jitter. The IEEE

Time-sensitive Network (TSN) Task Group (TG) has developed a collec-

tion of standards to standardize the support of time-sensitive applications

in Local Area Networks (LANs) by leveraging mechanisms such as traffic-

shaping, frame preemption, priority scheduling, etc. As the work done by

the TSN WG has focused on LANs, these mechanisms are not suitable for

a network spanning multiple LANs. The IETF Deterministic Networking

(DetNet) working group has been working on mechanisms that exploit L2

functionality in Time Sensitive Networking (TSN) so that zero packet loss

along with deterministic latency and jitter can be achieved in L3. Par-

ticularly, the working group has described Cycle Specified Queuing and

Forwarding (CSQF) based on Segment Routing to achieve deterministic

performance [2] [3].

Routing and Scheduling for 1+1 Protected DetNet flows 145

The end-to-end latency on a path between two points of a network can

be bounded by capping the latency of each node (switch or router) in the

path, as the latency component due to transmission delay and propagation

delay is usually constant on a wired link. Cyclical queuing and dequeuing

of packets in CSQF can be leveraged to limit the node latency. We have

discussed the operation of CSQF in section 1.5.1. But it is worth men-

tioning here that by specifying packet transmission the end-to-end latency

along any path can be bounded. Moreover, this also ensures that the queue

occupancy in any node does not exceed an upper limit. Packet losses due

to congestion thus can be prevented by using queues of appropriate lengths

that are not overflowed.

Avoiding packet overflows in queues guarantees zero congestion losses; how-

ever, this is not the only cause for a packet loss. To provide protection

against equipment (random media and/or memory) failures, dedicated pro-

tection for services is required. 1+1 protection has been a commonly ex-

ploited method to provide high reliability. The idea of 1+1 protection is to

use two paths to route packets between the source and destination as op-

posed to a single path; the destination selects packets from one path only. In

case of a node/link failure on one of the paths, the destination can just start

receiving packets from the other path. Due to this simplistic architecture,

this scheme has been popular in optical networks (SONET/SDH), where

the destination switches to one of the paths based on the switching criteria,

e.g., signal strength [4]. However, 1+1 protection cannot be naively used

for DetNet flows; packet scheduling needs to be performed along the two

paths such that packets can be reliably recovered in case of a failure, as

discussed in the next section.

Deploying 1+1 protected DetNet flows entails two components– (1) routing

or selecting two paths between the source and destination and (2) generating

reliable packet schedules along these paths. The problem of joint routing

and scheduling in DetNets using CSQF has been investigated in [5]. To

the best of our knowledge, modeling of protection schemes in DetNets has

not been addressed yet. Therefore, we address the Routing and Scheduling

(RTSCH) problem for 1+1 protected DetNet flows by formulating an In-

teger Linear Program (ILP) for it. Additionally, we propose two heuristic

algorithms to solve the above problem instances of reasonable size.

The rest of the paper 1 is organized as follows. The technical background

regarding 1+1 protection for DetNet flows is provided in section 5.2. Sec-

tion 5.3 details the related works for this paper. The system model and

ILP formulation for the 1+1 DetNet protection problem are described in

1The section in the paper on CSQF is contained in section 1.5.1 of the introduction
chapter.

146 Chapter 5

section 5.4. In section 5.5, we have discussed (a) greedy based heuristic

and (b) Tabu-search based heuristic. Section 5.6 presents the performance

evaluation of the ilp and two heuristics in terms of various metrics. Finally,

the paper is concluded in section 5.7.

5.2 CSQF and 1+1 protection

DetNet services avoid packet losses resulting from contention between dif-

ferent flows by traffic regulation combined with careful packet scheduling.

For packet scheduling, a queuing mechanism like CSQF can be exploited to

provide guarantee zero packet loss and end-to-end delay.

Packet scheduling is not enough for DetNet services as these services can

still be disrupted due to failures of a network node (e.g., memory error) or a

link (e.g., fiber break). Dedicated protection schemes, e.g., 1+1, have been

widely used in packet-based networks [4] to protect against such failures. In

1+1 protection, an extra path, in addition to the original path, is used to

route packets between the source and destination. At the destination end,

packets received on the two paths are de-duplicated.

Due to different end-to-end delays along the two paths, the reliability of 1+1

protection can be impacted. This phenomenon is demonstrated in Fig. 5.1.

The Packet Replication Function (PRF) present on the source is responsi-

ble for duplicating the packets, that are received on its input interface onto

its two output interfaces that are subsequently routed through two differ-

ent paths p1 and p2. At the destination, the Packet Elimination Function

(PEF) performs packet de-duplication/elimination on the packets received

on the last links (p1[−2], p1[−1]) and (p2[−2], p2[−1]) of paths p1 and p2,

respectively. Packet de-duplication entails the presence of sequencing in-

formation with packets that can be done by adding a sequence number or

timestamp to the packet while doing duplication at the PRF.

The above mentioned functions for 1+1 protection can be implemented

via IP encapsulation/decapsulation of the DetNet flows. For instance, [7]

proposed to use P4 match-action tables to implement the PRF and the

PRE at the source and destination nodes, respectively. As this paper is

not concerned with the actual implementation of these functions, we will

next explain only their high-level logic. The PRF simply adds the packet

sequence number to the packet header and then duplicates the packet to

send them over the two interfaces of the source node. With packet se-

quence information, packet elimination becomes quite straightforward. The

overview of PEF logic is shown in Fig. 5.1 (b). The PEF remembers

the highest sequence number seqlst of the last output cycle and only out-

puts (output(pkts)) the packets of this cycle if its highest sequence number

Routing and Scheduling for 1+1 Protected DetNet flows 147

seqpkts is higher than seqlst. Next, the PEF updates seqlst to seqpkts. In

case, if seqpkts < seqlst, the packets of this cycle are discarded. The simple

logic of a PEF allows it to perform packet elimination without contributing

a significant latency and excessive buffering.

With such a PEF at the destination, a reliable packet elimination is only

(a)

(p
2
[-2], p

2
[-1])

3 2 1 0

3 2 1 0

3 1 0

X

(p
1
[-2], p

1
[-1])

o

(b)

seq
pkts

> seq
lst

seq
lst

<- -1

output(pkts)

seq
lst

<- seq
pkts

pkts <-

recv_cycle()

(c)source
destination

p
2

p
1

p
1
[-2]

p
2
[-2]

p
1
[-1]

p
2
[-1]

o
PRF PEF

(p
2
[-2], p

2
[-1])

2 1 0

1 0

1 0

X
(p

1
[-2], p

1
[-1])

o

(d)

2

2

t

Figure 5.1: Reliable recovery with 1+1 CSQF. (a) 1+1 protection, (b) PEF
logic, (c) Naive scheduling and (d) End-to-end delay aware scheduling.

possible if the packet transmission schedules on the two paths follow the

spacing constraint. Let’s assume that each cycle has bandwidth to send one

packet; the PRF sends four packets in four cycles over the two disjoint paths,

where the end-to-end latency of p2 is higher than p1 as shown in Fig. 5.1(c).

The packet schedules on links (p1[−2], p1[−1]) and (p2[−2], p2[−1]) and the

output o of the PEF is shown. The PEF receives pkt0, pkt1, pkt2, pkt3 on p1
during cycles 0, 2, 4, 5 and on p2 during cycles 2, 4, 6, 7, respectively. Sup-

posing pkt2 is lost somewhere on p1, the PEF is not able to recover it from

p2, as the next packet received by the PEF with seq > 1 (after recovering

pkt1) is pkt3 on p1, though pkt2 is later received on p2.

The above situation can be avoided by carefully scheduling packet trans-

missions on the 1+1 paths. The spacing constraint on packet schedules

ensures that any two cycles in the packet schedule with non-zero bandwidth

allocation must be separated by at least the absolute value of the difference

between the end-to-end delays of the two paths. This constraint ensures

148 Chapter 5

reliable recovery as shown in Fig. 5.1 (d) where the new schedules adheres

to the spacing constraint.

It is worth noting that reliable recovery is possible without satisfying the

spacing constraint, though that requires an additional component: the

Packet Re-ordering Function (PROF). The PROF would require additional

buffering to store the received packets on the two paths and then perform de-

duplication. Though, de-duplication can be performed efficiently by main-

taining a heap data structure for the received packets, where each heap in-

sertion operation has O(log(n)) complexity; nonetheless, the buffering and

additional computation could contribute a significant latency to the packet

recovery process. In this paper, we therefore assume that the destination

does not perform packet re-ordering.

5.3 Related Works

The attempts to make networks more deterministic have been going on for

several years. The standardization work by the TSN task group in IEEE

802.1 started in 2015. These standards have sought to guarantee bounded

latency and high reliability in Layer 2. For reliability, the group proposed

IEEE 802.1CB Frame Replication and Elimination for Reliability (FRER)

as a new Ethernet sub-protocol [8]. To extend these guarantees to Layer 3,

IETF DetNet TG has proposed various mechanisms [9].

With the coming up of TSN standards, researchers have shown keen interest

in developing algorithms for the deployment of time-sensitive applications.

Numerous studies have focused on generating schedules for time-triggered

traffic in IEEE 802.1Qbv/TSN such that a given objective function is op-

timized. Craciunas et al. have used Satisfiability Modulo Theory (SMT)

to optimize the network as well as application schedules in a switched mul-

tispeed time-triggered network [10]. In [11], the authors have formulated

the problem of routing and scheduling of time-triggered traffic in TSNs as

an ILP to provide real-time guarantees by exploiting the logical centraliza-

tion paradigm of software-defined networking. Approaches based on SMT

or ILP generate exact solutions by expressing the scheduling problem as a

constrained optimization or constrained satisfaction problem that is solved

by ILP or SMT solvers. The advantage of using exact approaches is that

they generate provable optimal solutions. On account of scheduling prob-

lems being NP-hard, exact approaches do not scale well to flow numbers and

network sizes. Alternatively, heuristic and metaheuristic approaches solve

this problem by compromising on the quality of the solution for execution

speed. Tabu search in [12] and incremental backtracking in [13] and [14]

Routing and Scheduling for 1+1 Protected DetNet flows 149

have been proposed to speed up the joint RTSCH problem with close to an

optimal solution.

Recently, the RTSCH problem in CSQF-based networks has also been ad-

dressed in various studies. In [5], the joint routing and scheduling problem

for DetNets is formulated using ILP and two methods–column generation

and dynamic programming, are presented to maximize traffic acceptance

while solving the problem. Moreover, a scalable greedy algorithm is also

proposed that is capable of solving the problem with an small gap. Sim-

ilarly, the authors in [15] have modeled load balancing in DetNets where

time-sensitive flows are split over multiple paths in order to improve net-

work utilization.

Reactive mechanisms such as Dynamic Multipath Optimization (DMPO),

through the use of continuous network monitoring and flow prioritization,

can provide a level of reliability by re-routing the critical traffic during an

interruption [16]. However, the restoration time in DPMO spans hundreds

of milliseconds to seconds; thus, an interruption can still be detrimental for

Detnet flows. Dedicated path protection schemes like 1+1 have been stud-

ied in relation to Elastic Optical Networks (EONs). Walkowiak et al. have

formulated the offline problem of routing and spectrum allocation (RSA)

to dedicated path protection (DPP) in EONs as an ILP. Tabu-search-based

metaheuristics were proposed to solve the problem instances of reasonable

size.

These works are limited largely to the optical networks and hence do not

address the problem of dedicated protection in DetNets. In contrast to

these studies, our work focuses on the problem of 1+1 protection for Det-

Net flows. We assume the nodes in the given DetNet are CSQF capable

and the source and the destination are capable of performing the necessary

operations to provide 1+1 protection.

5.4 System Model and ILP Formulation

Next, we describe the system model and then formulate the 1+1 RTSCH

problem as an ILP. As discussed earlier, the time at each node’s output

port is divided into intervals of equal duration Tc, referred to as cycles. The

number of cycles after which the traffic pattern of the application repeats

is referred to as hypercycle; therefore, it is sufficient to consider the prob-

lem for one hypercycle only. Moreover, it can be assumed without loss of

generality that cycles on each node are aligned, i.e, start at the same time.

Physical infrastructure: The deterministic network infrastructure is repre-

sented using a directed graph G = (N,E), where N is the set of CSQF-

capable switches or routers and E is the set of physical links connecting

150 Chapter 5

the nodes in N . For each link e = (ni, nj) ∈ E the cycles in a hypercycle

are denoted by C and the available bandwidth for each cycle c ∈ C de-

noted by bwni,nj ,c. For instance, on an unused 10G link during each cycle

of Tc=20µs, a total of 25000B or 16x1500B packets are available. The total

delay introduced on the link (ni, nj) is represented by dni,nj
, that includes

the propagation delay, transmission delay and processing delay due to nj .

Requests: A set of requests R needs to be RTSCH’ed with 1+1 protec-

tion on G. Each request r ∈ R has a corresponding five-valued tuple

T
r = (nr

s, n
r
d, bw

r, De2e
r , δDe2e

r) that contains the metadata required for

RTSCH’ing r. Here, nr
s and nr

d are the r’s source and destination between

which two DetNet flows are required; bwr denotes the r’s bandwidth require-

ment during one hypercycle; De2e
r and δDe2e

r are the maximum end-to-end

delay and jitter permissible for request r. Fig. 5.2 shows T
r for request

r, nr
s = n0, n

r
d = n9 and bwr = 64 packets(=92kB); for Tc = 20µs and

|C| = 50, r requires full four cycles out of fifty cycles along each link of p1
and p2.

Variables : Binary variable γr
p indicates the routing of r ∈ R using p ∈

Pnr
s,n

r
d ; γr

p = 1, if path p is used for the routing of r; otherwise γr
p = 0.

Continuous decision variable ωr
p,ni,nj ,c

denotes the amount of bandwidth

allocated to request r on physical link (ni, nj) ∈ p, p ∈ Pnr
s,n

r
d during cycle

c ∈ C. In addition to binary variables γr
p and ωr

p,ni,nj ,c
, we next introduce a

few helpers or dependent variables that are required in the ILP formulation.

Binary variable λr indicates if exactly two disjoint paths are allocated for

the routing of r. ρrp,ni,nj ,c
is a binary variable that indicates if non-zero

bandwidth is allocated to request r ∈ R on link (ni, nj) ∈ p, p ∈ Pnr
s,n

r
d .

Binary variable ηrp,ni,nj ,c1,c2
= 1, if at least one of ρrp,ni,nj ,c1

and ρrp,ni,nj ,c2

is 0; otherwise ηrp,ni,nj ,c1,c2
= 0.

Table 5.1 lists the parameters and variables involved in the system model

along with a short description.

In the 1+1 RTSCH problem, given the set of requests R and DetNet topol-

ogy G, requests must be routed and scheduled through two disjoint paths.

Fig. 5.2 shows an illustration where the controller takes as input DetNet

topology G along with request set R and solves the 1+1 RTSCH prob-

lem. The controller itself can be distributed / replicated across multiple

instances for robustness and scalability reasons [17, 18] . Nevertheless, we

can assume a single logical controller that is responsible for routing and

scheduling Detnet flows. The solution of the 1+1 RTSCH problem, i.e.,

routes and schedules for requests can then be used to configure the source

nodes with SID label stacks, as discussed earlier.

Routing and Scheduling for 1+1 Protected DetNet flows 151

Controller

p1
p2

Topology:
G, delay, etc.

destination

n0

n3

n4

n2
n5

n6

n7

n8

n9

n1

n8

source

R = {... r, ...}
Request set

route+schedule: SID labels

Tr = (no, n9, 64)

Figure 5.2: Illustration of the 1+1 RTSCH problem.

5.4.1 ILP Formulation

In this section, the 1+1 RTSCH problem is formulated as an optimization

problem. The goal is to find two disjoint paths between the sender and

receiver of each request as well as schedule packet transmission along the

two paths meanwhile optimizing an objective function, e.g., maximizing the

total accepted traffic, minimizing the jitter or end-to-end delay on the two

paths.

The DetNet 1+1 protection problem is formulated as a Integer Linear

Program (ILP). The objective of the formulation is to maximize the total

accepted traffic for 1+1 RTSCH’ing.

obj : max
∑

r∈R

λrbwr (5.1)

The constraints for this ILP formulation are listed from (5.2) to (5.13). Con-

straint pair (5.2-5.3) ensures exactly two paths are selected from Pnr
s,n

r
d for

the request mapping, where λr indicates 1+1 routing. With this constraint

pair, λr is 0 if
∑

p∈Pnr
s,nr

d

γr
p = 0 and is 1 if exactly two paths are selected.

∑

p∈P
nr
s,nr

d

γr
p ≥ 2λr, ∀r ∈ R. (5.2)

λr ≥ γr
p , ∀r ∈ R, ∀p ∈ Pnr

s,n
r
d . (5.3)

The constraint (5.4) enforces disjointedness on the selected paths. In

this constraint, if selected paths p1 and p2 are disjoint, i.e, disj(p1, p2) = 1,

152 Chapter 5

Table 5.1: Description of the notations used for different parameters and
variables involved in the system model.

Notation Description
G = (N,E) Directed graph representation of the DetNet infras-

tructure, where N is the set of nodes and E is the
set of physical links between the nodes.

Ne Ne ⊂ N is the set of all endpoints, i.e, sources and
destinations.

C The set of all cycles in a hypercycle.
bwni,nj ,c Available bandwidth (in bytes) on physical link

(ni, nj) ∈ E during cycle c ∈ C.
dtxni,nj

Transmission delay on link (ni, nj).

dprocn Maximum processing delay on node n.
dni,nj

Total delay on link (ni, nj); dni,nj
= dtxni,nj

+ dprocnj
.

R Set of all requests to be RTSCH’ed on G.
T
r Request tuple T

r = (nr
s, n

r
d, bw

r, De2e
r , δDe2e

r) cor-
responding to r ∈ R, where nr

s, n
r
d, bw

r, De2e
r and

δDe2e
r are the source, destination, bandwidth re-

quirement (in bytes) of r, maximum permissible end-
to-end delay and jitter, respectively.

Pnr
s,n

r
d The set of all paths between the source nr

s and the
destination nr

d of r ∈ R.
γr
p Binary variable indicates the routing of r ∈ R on

p ∈ Pnr
s,n

r
d .

λr Binary (helper) variable indicates the 1+1 routing
of r ∈ R.

ωr
p,ni,nj ,c

Bandwidth (in bytes) allocated to request r ∈ R on
link (ni, nj) ∈ p, p ∈ Pnr

s,n
r
d , during cycle interval

c ∈ C.
ρrp,ni,nj ,c

Binary (helper) variable indicates if non-zero band-
width is allocated to request r ∈ R on link (ni, nj) ∈
p, p ∈ Pnr

s,n
r
d , during cycle interval c ∈ C.

ηrp,ni,nj ,c1,c2
Binary (helper) variable ηrp,ni,nj ,c1,c2

equals 1, if at
least one of ρrp,ni,nj ,c1

and ρrp,ni,nj ,c2
is 0; otherwise

ηrp,ni,nj ,c1,c2
= 0.

then the LHS (=1) equals the RHS (=1); however, if they are non-disjoint,

i.e, disj(p1, p2) = 0, then the LHS (=1) is greater than the RHS (=0), which

shall be prevented by the constraint.

γr
p1

+ γr
p2

− 1 <= disj(p1, p2), ∀r ∈ R, ∀p1, p2 ∈ Pnr
s,n

r
d . (5.4)

The number of packets (bandwidth) allocated to a request during a

Routing and Scheduling for 1+1 Protected DetNet flows 153

cycle must be conserved, i.e, the total packets transmitted in a cycle at a

link should be equal to the total packets transmitted on its downstream

link in the cycle shifted by the link delay. Mathematically, the amount

of bandwidth allocated on a link (ni, nj) of path p during cycle c is equal

to the bandwidth allocated on downstream link (nj , nk) on p during cycle

(c + dnj ,nk
)% | C | as expressed in constraint (5.5). Fig. 5.3 illustrates

packet scheduling along the network path p. The packet schedule on link

(n0, n1) is delayed by the link delay dn0,n1
= 5Tc to get the schedule for

(n1, n2) which is delayed by dn1,n2
= 4Tc to get the schedule for (n2, n3).

Cycles 5 and 7 on link (n1, n2) and cycles 9≡ 1(%8) and 11≡ 3(%8) on link

(n2, n3), have bandwidth equal to cycles 0 and 2 on link (n0, n1).

(n
0
, n

1
)

(n
1
, n

2
)

(n
2
, n

3
)

0 1 2 3 4 5 6 7

d(n
1
, n

2
)=5T

c
d(n

2
, n

3
)=4T

c

n
0

n
1

n
2

n
3

p

%8

5 6 7 8 9 10

11 12 13 148 9 10

0 1 2 3 4 5 6 7

Figure 5.3: Relationship of packet schedules on various links of a path.

ωr
p,ni,nj ,c

= ωr
p,nj ,nk,(c+dnj,nk

)%|C|

, ∀r ∈ R, ∀p ∈ Pnr
s,n

r
d , ∀(ni, nj), (nj , nk) ∈ p, ∀c ∈ C.

(5.5)

The sum of bandwidth allocated to all requests during a cycle cannot exceed

the available bandwidth in the cycle; this condition is ensured by constraint

(5.6).
∑

r∈R

ωr
p,ni,nj ,c

≤ bwni,nj ,c, (ni, nj) ∈ E, ∀c ∈ C. (5.6)

The total bandwidth allocated in hypercycle C should be equal to the

bandwidth requirement of r; this is guaranteed by constraint (5.7).

∑

c∈C

ωr
p,ni,nj ,c

= bwrγr
p , ∀r ∈ R, ∀p ∈ Pnr

s,n
r
d , ∀(ni, nj) ∈ p. (5.7)

154 Chapter 5

The pair of constraints in (5.8a-5.8b) ensures that the same schedule

is used on the first link ((p1[0], p1[1]) and (p2[0], p2[1])) of the two selected

paths.

ωr
p1,p1[0],p1[1],c

≥ ωr
p2,p2[0],p2[1],c

+ (γr
p1

+ γr
p2

− 2)ωmax,

∀r ∈ R, ∀p1, p2 ∈ Pnr
s,n

r
d , ∀c ∈ C.

(5.8a)

ωr
p1,p1[0],p1[1],c

≤ ωr
p2,p2[0],p2[1],c

− (γr
p1

+ γr
p2

− 2)ωmax,

∀r ∈ R, ∀p1, p2 ∈ Pnr
s,n

r
d , ∀c ∈ C.

(5.8b)

As discussed in section 5.2, at the receiver, any two cycles in the schedule

with non-zero bandwidth should be spaced by at least the difference of the

end-to-end delays along the two selected paths. The pair of constraints in

(5.9a-5.9b) enforces the minimum spacing (|Dp2
− Dp1

|) on the schedules

of p1 and p2 near the receiver end ((p1[−2], p1[−1]), (p2[−2], p2[−1])). For

path p1, when two cycles c2 and c1 have minimum bandwidth allocated,

i.e, nr
p1,p1[−2],p1[−1],c1,c2

= 0, then the LHS of the constraint pair (c2 −

c1) is at least |Dp2
− Dp1

|. In other words, if Dp2
≥ Dp1

, then (5.9a)

is active while (5.9b) is inactive and if Dp2
≤ Dp1

, then (5.9b) is active

while (5.9a) is inactive. If at least one of ρrp1,n′,nr
d
,c1

and ρrp1,n′,nr
d
,c2

is 0

(nr
p1,p1[−2],p1[−1],c1,c2

= 1), the pair of constraints is inactive.

c2ρ
r
p1,p1[−2],p1[−1],c2

− c1ρ
r
p1,p1[−2],p1[−1],c1

≥

(Dp2
−Dp1

)− Cmaxη
r
p1,p1[−2],p1[−1],c1,c2

,

∀r ∈ R, ∀p1, p2(̸= p1) ∈ Pnr
s,n

r
d , (p1[−2], p1[−1]) ∈ p1, ∀c1, c2(> c1) ∈ C.

(5.9a)

c2ρ
r
p1,p1[−2],p1[−1],c2

− c1ρ
r
p1,p1[−2],p1[−1],c1

≥

(Dp1
−Dp2

)− Cmaxη
r
p1,p1[−2],p1[−1],c1,c2

,

∀r ∈ R, ∀p1, p2(̸= p1) ∈ Pnr
s,n

r
d , (p1[−2], p1[−1]) ∈ p1, ∀c1, c2(> c1) ∈ C.

(5.9b)

The binary variable ρrp,ni,nj ,c
in constraint (5.10) is 0 when ωr

p,ni,nj ,c
= 0

and is 1, if at least ωr
min is allocated.

ωr
minρ

r
p,ni,nj ,c

≤ ωr
p,ni,nj ,c

≤ ωr
maxρ

r
p,ni,nj ,c

,

∀r ∈ R, ∀p ∈ Pnr
s,n

r
d , (ni, nj) ∈ p, ∀c ∈ C.

(5.10)

For Detnet flows, it is required that the packets transmitted by nr
s are

received by nr
d within a permissible delay De2e

r . With CSQF, the worst-case

Routing and Scheduling for 1+1 Protected DetNet flows 155

delay along a path p can be expressed as
∑

(ni,nj)∈p

dni,nj
[19]. The constraint

in (5.11) imposes this condition on the two selected paths for each request.

As far as the jitter with CSQF is concerned, its value is dependent on the

spacing between any two cycles with non-zero bandwidth. The maximum

(intra-cycle) jitter is independent of the chosen path and is equal to 2Tc.

Therefore, the cycle time should be chosen such that Tc ≤ De2e
r .

γr
p

∑

(ni,nj)∈p

(dni,nj
) ≤ De2e

r , ∀r ∈ R, ∀p ∈ Pnr
s,n

r
d . (5.11)

The constraint trio in (5.12a, 5.12b, 5.12c) ensures ηrp,ni,nj ,c1,c2
is 0 only

if both ρrp,ni,nj ,c1
and ρrp,ni,nj ,c2

are 0 and is 1, otherwise. Variables γr
p ,

λr, ρcp,ni,nj ,c
and ηrp,ni,nj ,c1,c2

can only take binary values (0 or 1) while

ωr
p,ni,nj ,c

is bounded; these limits are expressed in constraint (5.13).

ηrp,ni,nj ,c1,c2
≥ (1− ρrp,ni,nj ,c1

), ∀r ∈ R, ∀p ∈ Pnr
s,n

r
d ,(ni, nj) ∈ p, ∀c ∈ C.

(5.12a)

ηrp,ni,nj ,c1,c2
≥ (1− ρrp,ni,nj ,c2

), ∀r ∈ R, ∀p ∈ Pnr
s,n

r
d ,(ni, nj) ∈ p, ∀c ∈ C.

(5.12b)

ηrp,ni,nj ,c1,c2
≤ (2− ρrp,ni,nj ,c1

− ρrp,ni,nj ,c2
), ∀r ∈ R, ∀p ∈ Pnr

s,n
r
d ,

(ni, nj) ∈ p, ∀c ∈ C.

(5.12c)

γr
p ∈{0, 1}, λr ∈ {0, 1}, ηrp,ni,nj ,c1,c2

∈ {0, 1}, ωr
p,ni,nj ,c

∈ [0, ωr
max],

ρrp,ni,nj ,c
∈ {0, 1} ∀r ∈ R, ∀p ∈ Pnr

s,n
r
d , ∀(ni, nj) ∈ p, ∀c, c1, c2 ∈ C.

(5.13)

5.5 Heuristics

The ILP approach, presented in the previous section, solves the 1+1 RTSCH

problem by navigating through the solution space consisting of all combina-

tions of variable values. As the total number of variables in the formulation

increases drastically with the size of the problem the resulting solution space

is huge. Therefore, we next present two heuristics that have relatively low

execution times and provide sub-optimal but decent solutions.

5.5.1 Greedy Heuristic

The pseudocode for the greedy heuristic to solve the 1+1 RTSCH problem

is shown in Alg. 5.1. The procedure batch rt sch is called with the set of

156 Chapter 5

requests R arranged in the decreasing order of bwr values. Thus, greedy -

rt sch is called first for r with the highest bwr value and last for r with the

lowest bwr value (l. 36).

In greedy rt sch, first, all paths between the two endpoints nr
s and nr

d are

generated and stored in Pnr
s,n

r
d (l. 17). We make use of Networkx’s all sim-

ple paths procedure to generate the paths between the given endpoints [20].

The algorithm utilizes a modified depth-first search for path computation

and runs in O(N + E) time for each path.

Next, a pair of for loops is used to select the first two paths on which rout-

ing and scheduling is feasible.

For a path-pair (p1, p2) ∈ Pnr
s,n

r
dPnr

s,n
r
d pair, it is checked whether p1 and p2

are disjoint and if enough cycles are available to generate a feasible sched-

ule; otherwise, the next (p1, p2) pair is considered (l. 18). Consider for

example a path pair p1 and p2, a hypercycle with eight cycles (|C| = 8)

and each cycle with a bandwidth of 16 (1500B) packets, if the difference

in the end-to-end delay along p1 and p2 is 4 cycles then the requests with

bwr > 16⌈8/2⌉ = 32 cannot be routed on p1 and p2, irrespective of the

schedule. However, if the difference in the end-to-end delay is 3 cycles, then

only the requests with bwr > 48 are rejected. This step ensures that next

step (schedule computation) is not executed if scheduling is not possible

for the selected path pair p1 and p2.

Using gen sch, a schedule is generated at the destination end ((p1[−2], p1[−1]))

starting with cycle cstrt (l. 24). The procedure gen sch greedily attempts to

allocate bwr among C cycles of (p1[−2], p1[−1]), with start cycle cstrt and a

minimum cycle spacing of δc (l. 1-14). If such schedule exists (schp1,d ̸= ϕ)

at the destination end, then using procedure sch pth with direction argu-

ment dir = −1 (from destination to source), the schedule for all the links

in p1 is generated by (negatively) delaying the destination schedule schp1,d.

This is required because of the constraint (5.5), as discussed in section 5.4.

If such a schedule can be generated, i.e, bandwidth required in the corre-

sponding cycles along all the links on p1 is available, the schedule for p1
is stored in ωp1

. Again, for the second path, by calling procedure sch pth

with the schedule at the source end of p2, i.e., ωp1
[(p1[0], p1[1])], and the

direction argument dir = +1 (from source to destination), the schedule for

all the links of p2 is generated and stored in ωp2
. In case a schedule is found,

the schedule ωp1
∪ ωp2

along the two paths is returned; otherwise the next

(p1, p2) pair is checked.

If a request is successfully RTSCH’ed, i.e., ωr ̸= ϕ (l. 37), the link band-

width in the corresponding cycles along the two paths is updated using

procedure upd bw. Moreover, the total accepted traffic (objval) is updated

and the request schedule is stored in sch.

Routing and Scheduling for 1+1 Protected DetNet flows 157

The path computation step of the heuristic has the time complexity of

O(|E||P |) whereas the schedule generation step runs in O(|E||P ||C|2) time.

Thus, for a network topology of realistic size the schedule generation step

dominates the overall execution time of the greedy heuristic.

5.5.2 Tabu-search Heuristic

On the one hand, the greedy heuristic is fast and returns a suboptimal so-

lution, but on the other hand, though the ILP solution is optimal it takes a

lot of time to compute. There exists a third approach to generate a close-to-

optimal solution in a reasonable time. By employing a metaheuristic such

as Tabu-search (TS) the substantial solution space can be navigated much

more efficiently.

The flowchart for TS-based heuristic to solve 1+1 RTSCH problem is shown

in Fig. 5.4. Similar to the greedy heuristic, the TS heuristic is called with

the set of requests R, request tuples T and infrastructure graph G. First,

rt sch is called to RTSCH with srtd(R) and the resulting greedy solution

is captured in init soln object and the total accepted traffic for this solution

is stored in bst objval. Before proceeding further, the variable initialization

is done.

The core of the TS heuristic is a while loop that runs for ITRNmax itera-

tions and tries to improve the current solution init soln taking into account

the recent moves, as well as the tabu moves. A move to one of the neighbour

of init soln is made using procedure nbr soln (explained in the next para-

graph). After generating the neighbouring solution new soln, it is checked

whether new soln is better than bst objval, i.e, the total accepted traffic

for the neighbouring solution new soln.objval is more than bst objval. If

yes, the move is added to the collection of tabu moves along with the tenure

TT . This results in the prohibition of undertaking move for the next TT

iterations. If new soln is worse than the best score, the move is stored in

moves used so that it is not performed again while the search through the

current neighbourhood is carried out. In case no better solution is found

for NOIMP ITRNmax iterations, the best score is relaxed by a factor of

WF so that the search in another neighbourhood can be performed from

the next iteration.

The pseudocode for the procedure nbr soln is shown in Alg. 5.2. The

two kinds of moves that can be undertaken in nbr soln are: i) the request

swap move and ii) the path change move, chosen with probability prreq
and 1 − prreq, respectively. If the request swap move is chosen, the order

of requests soln.R is modified by swapping two randomly selected requests

soln.R[i] and soln.R[j]. Otherwise, if the path change move is chosen, a

request is randomly selected from soln.R it is re-routed and re-scheduled us-

158 Chapter 5

Algorithm 5.1: Procedure for the greedy-based heuristic to solve
the 1+1 RTSCH.

1 Procedure gen sch(c1, bw
r, p, δc, G = (N,E)):

2 bwalc, sch, cnxt ← 0, φ, c1;
3 for c in [c1, C − 1] do
4 if c == cnxt then

5 bwc ← min(bwr − bwalc, bw
c
p[−2],p[−1]);

6 if bwc > 0 then

7 bwalc ← bwalc + bwc;
8 sch[p, p[−2], p[−1], c]← bwc;
9 cnxt ← cnxt + δc;

10 else

11 cnxt ← cnxt + 1;

12 if bwalc >= bwr then

13 return sch;

14 return φ;

15 Procedure greedy rt sch(Tr = (nr
s, n

r
d, bw

r), G = (N,E)):

16 Pnr
s,n

r
d ← all paths(nr

s, n
r
d);

17 for p1 in Pnr
s,n

r
d do

18 for p2 in Pnr
s,n

r
d do

19 δc← max(1, | Dr
p2
−Dr

p1
|) ;

20 if !disj(p1, p2) or bwr > bwc⌈|C|/δc⌉ then
21 continue;

22 for cstrt in [0, C − 1] do
23 schp1,d ← gen sch(cstrt, bw

r, p1, δc, G);
24 if schp1,d ̸= φ then

25 ωp1 ← sch pth(schp1,d, p1, dir =-1);
26 if ωp1 ̸= φ then

27 ωp2 ← sch pth(ωp1 [(p1[0], p1[1])], p2, dir =+1);
28 if ωp2 ̸= φ then

29 return ωp1 ∪ ωp2

30 return φ;

31 Procedure rt sch(R, T, G = (N,E)):
32 objval, sch ← 0, φ;
33 for r in R do

34 ωr = greedy rt sch(Tr, G);
35 if ωr ̸= φ then

36 objval, sch ← objval + bwr, sch ∪ ωr ;
37 upd bw(ωr, G);

38 return sch,objval;

Routing and Scheduling for 1+1 Protected DetNet flows 159

ing procedure pth chng. After completing a move, the procedure nbr soln

returns the selected move along with the new solution. For both kinds, a

move is skipped and another one is considered if it was performed recently

or it is tabued in the current iteration.

start

itrn >

 ITRN
max

;

bst_objval, sch <-

rt_sch(srted(R), T, G);

init_soln <- {

srted(R), sch, bst_objval};

itrn <- 0;

noimp_itrn <- 0;

moves_used <- 𝛷;

tabu_moves <- 𝛷;

move, new_soln <-

nbr_soln (.., init_soln,..);

new_soln.objval

>

 bst_objval

moves_used.append(

move)

noimp_itrn

>

 NOIMP_ITRN
max

noimp_itrn <- 0

bst_objval <-

bst_objval*WF

tabu_moves[move] <-

itrn+TT

noimp_itrn <- 0

init_soln <- new_soln

moves_used <- 𝛷

bst_objval <-

init_soln.objval

itrn++;

noimp_itrn ++

moves_used <- 𝛷

end

Tabu-search Heuristic

Y

N

Y

N

Y

N

Figure 5.4: Flowchart depicting TS heuristic to solve the 1+1 RTSCH problem.

5.6 Evaluation and Results

In this section, we evaluate the performance of the ILP approach and the

two proposed heuristics and then compare them. First, we describe the

160 Chapter 5

Algorithm 5.2: Procedure to generate a neighbouring solution in
the Tabu-search heuristic.
1 Procedure nbr soln(itrn, soln, moves used, moves tabu, G):

2 if rand() <= prreq then

3 i, j ← randsel(soln.R), randsel(soln.R) ;
4 while i ̸= j and

(

(i, j) ̸∈ moves used ∪moves tabu or

itrn > moves tabu[(i, j)]
)

do

5 i, j ← randsel(soln.R), randsel(soln.R) ;

6 swap req(soln.R, i, j);
7 return (i, j), {soln.R, rt sch(soln.R, G)};

8 else

9 i ← randsel(soln.R) ;
10 while i ̸∈ moves used ∪moves tabu or itrn > moves tabu[(i, j)]

do

11 i ← randsel(soln.R) ;

12 sch, objval ← pth chng(soln.R[i], G);
13 return (i), {soln.R, sch, objval};

simulation setup and list the associated parameters. Then, the results com-

paring the different approaches in terms of various metrics are presented.

5.6.1 Setup and Parameters

All the simulation experiments are performed on an Intel Xeon server ma-

chine with quad-core CPU @ 2.40GHz with 16GB of RAM memory running

Ubuntu-16.04 OS. The ILP model for the 1+1 RTSCH problem has been

built using the Python API of IBM’s ILOG CPLEx called DOcplex (De-

cision Optimization CPLEX Modeling). Both the heuristics are written in

Python programming language and the Networkx package is used to gener-

ate paths between two nodes in the given graph.

The cycle time Tc by default is assumed to be 20µs and the number of cycles

per hypercycle is 50.

For the evaluation of the ILP model and two heuristics, we have considered

six topologies. Fig. 5.5 shows the topologies hexagon: hex1-hex6, that we

have chosen to represent the DetNet infrastructure. Here, hex1 is a ring

topology where two disjoint paths exist between any pair of nodes. hex2

and hex3 are ring topologies with one and two diagonals, respectively. hex4

also contains two diagonals; though, the average difference between disjoint

points is small as compared to hex3. hex5 contains three diagonals and

hex6 is a full mesh where each node is directly connected to the rest of

the nodes. We have chosen the above topologies to highlight the impact of

Routing and Scheduling for 1+1 Protected DetNet flows 161

connectivity on the average accepted traffic.

Each link in these topologies is a 10G link, thus the bandwidth per cycle

bwni,nj ,c is 16x1500B packets per 20µs; the node processing delay and link

delay (propagation and transmission) dni,nj
are 40µs and 80µs, respectively.

For each request r ∈ R, the endpoints: source and destination are ran-

hex1 hex2 hex3

hex4 hex5 hex6

Figure 5.5: DetNet topologies used for the evaluation.

domly chosen from the set of topology vertices and its required bandwidth

bwr is randomly chosen with uniform probability in the range [50, 120] pack-

ets (1500B).

Table 5.2 list the parameters involved in the simulation experiment and

their corresponding values/ranges.

Table 5.2: Default values/range of various parameters involved in the evaluation.

Parameter Value or range Units
Topology hex1, hex2, hex3, hex4,

hex5, hex6
-

Request batch size (| R |) {30, 50, 70} numbers
Request bandwidth size
(bwr)

[50, 120] packets

Total cycles per hypercy-
cle (|C|)

{9, 18, 27, 54, 108, 216} numbers

Cycle time (Tc) {20, 40, 80, 160, 240, 480} µs
Cycle max. bandwidth
(bwmax

ni,nj
)

{8, 16, 32, 64, 128, 256} packets

Node processing delay
(dni,nj

)
40 µs

Links delay (dn) 80 µs

162 Chapter 5

5.6.2 Performance and Calculation time Trade-off

The 1+1 RTSCH problem is solved using the CPLEX solver and the two

heuristics; greedy (GRD) and tabu-search (TS). Fig. 5.6 shows the percent-

age of total for |R| = 30 with hex1 topology. The low traffic acceptance

for the three approaches results from the rejection of many requests due to

non-adherence of the spacing constraint in hex1. On one hand, GRD’s perfor-

mance is the lowest as it just returns the first feasible solution with greedy

bandwidth allocation for each request. On the other hand, the ILP ap-

proach has the highest performance because it returns the optimal solution

by searching through the entire solution space. Although, the performance

of the TS approach is inferior to the ILP approach it still outperforms the

GRD approach, especially for large problem sizes as will be highlighted in the

next section.

The ILP approach, though is the most optimum approach, may not be suit-

able for large size instances of the 1+1 RTSCH problem. Even for a rea-

sonable problem size, RTSCH’ing |R| = 30 on hex1 topology, the CPLEX

calculation exceeds 30 minutes. The calculation time increases rapidly when

the topology is changed from hex1 to hex2; in fact, it runs into several hours

for |R| ≥ 30 with the hex2 topology. This is because as the connectivity of

the topology increases, the solution space explodes due to the increase in

the number of paths between two nodes thus resulting in very high calcula-

tion time. Fig. 5.7 depicts the evolution of best bound (Bst-Bnd), objective

value (Obj) and integer (Bst-Int) solution with time for |R| = 30 and the

hex2 topology. Here Bst-bnd and Obj are the CPLEX’s best objective func-

tion value achievable and current node’s objective values, whereas Bst-int

is the objective value of the best integer solution. It can be observed that

most improvements in the integer solution’s objective value are found in the

early few minutes and there is a marginal improvement afterward; nonethe-

less, the CPLEX calculation time spans several hours. As an alternative to

the ILP approach, the two heuristics scale well with the problem size that

returns a solution within a few seconds.

Table 5.3 lists the CPLEX calculation times for the 1+1 RTSCH problem

for |R| = {30, 50, 70} with the hex1 topology. The calculation time for TS

is higher as compared to GRD; though, the maximum calculation time (for

|R| = 70) is still within a few seconds. We also observed that the calculation

time for GRD and TS does not vary with the topology. The ILP approach,

on the other hand, is infeasible for all the problem sizes, except for |R| = 30

and the hex1 topology, thus the calculation times are not indicated here.

Consequently, it is unfit to solve the reasonable size instances of the 1+1

RTSCH problem and the heuristics should be employed for such instances.

Routing and Scheduling for 1+1 Protected DetNet flows 163

ILP GRD TS
Approaches

0

5

10

15

20

25

30

35

40

45
%

ac
ce

pt
ed

 tr
af

fic

Figure 5.6: Comparison of the ILP and heuristics in terms of the percentage of
the total accepted traffic.

0 250 500 750 1000 1250 1500 1750
iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 A

c
c
e
p
t
e
d
 t

r
a
ffi

c

Current
objective value

Best integer solution

Best bound

Figure 5.7: Evolution of the various ILP parameters with time.

164 Chapter 5

Table 5.3: Approximate calculation time for GRD and TS with the hex1 topology.

|R| GRD time(s) TS time(s)
30 0.004 2.4
50 0.008 4.0
70 0.01 7.0

5.6.3 Heuristic Performance

Before presenting the performance results for the heuristics, we present

the results showing the percentage of the total acceptable traffic for the

topologies hex1-hex6. Fig. 5.8 shows the percentage of total accepted traffic

satisfying only the spacing constraint assuming each cycle has the maximum

bandwidth bwmax
ni,nj

. These results indicate that with the increase in the

connectivity of a topology, from hex1 to hex3, the average number of paths

between any two nodes increases. As the number of paths increases, the

number of requests that adhere to the spacing constraint increases resulting

in an increase in the total accepted traffic.

hex1 hex2 hex3 hex4 hex5 hex6
Topologies

0

20

40

60

80

100

%
 ac

ce
pt

ed
 tr

af
fic

Figure 5.8: The percentage of the total accepted traffic for different hex
topologies, considering only the spacing constraint.

Next, we report the percentage of the total accepted traffic taking into

account the actual cycle bandwidth bwni,nj ,c instead of maximum cycle

bandwidth bwmax
ni,nj

. The total accepted traffic is the sum of the bandwidth

requirements of all requests that can be routed and scheduled. Fig. 5.9

shows the percentage of the total accepted traffic for the sets of requests

with different sizes. The total accepted traffic for the two heuristics de-

creases with increasing | R | because increasingly cycles are consumed for

the accepted traffic and lesser bandwidth per cycle is left for the other re-

quests. The total accepted traffic also increases as the connectivity of the

Routing and Scheduling for 1+1 Protected DetNet flows 165

graph increases which in turn increases the average number of possible paths

for each request. It can also be observed that TS outperforms GRD in all the

cases. For instance, in hex4 and |R| = 50, the % accepted traffic for TS is

better as compared to GRD by 8%.

30 50 70
Total reqs. R

0

20

40

60

80

100

%
ac

ce
pt

ed
 tr

aff
ic

hex1
GRD
TS

30 50 70
Total reqs. R

0

20

40

60

80

100

%
ac

ce
pt

ed
 tr

aff
ic

hex2
GRD
TS

30 50 70
Total reqs. R

0

20

40

60

80

100

%
ac

ce
pt

ed
 tr

aff
ic

hex3
GRD
TS

30 50 70
Total reqs. R

0

20

40

60

80

100

%
ac

ce
pt

ed
 tr

aff
ic

hex4
GRD
TS

30 50 70
Total reqs. R

0

20

40

60

80

100

%
ac

ce
pt

ed
 tr

aff
ic

hex5
GRD
TS

30 50 70
Total reqs. R

0

20

40

60

80

100

%
ac

ce
pt

ed
 tr

aff
ic

hex6
GRD
TS

Figure 5.9: The percentage of the total accepted traffic with |R| for different hex
topologies.

5.6.4 Impact of Tc

Next, the influence of the cycle time on the performance of the two heuris-

tics is reported. The COST239 network is selected for this evaluation. We

selected this network as it has sufficient connectivity as shown in Fig. 5.10.

Each node is connected to at least four neighbours, thus providing sufficient

redundancy for 1 + 1 protection.

Fig. 5.11 shows the percentage of the total accepted traffic for | R |= 50 on

the COST239 network for cycle times between 20-480µs. It can be observed

that as the cycle time is increased, the total accepted traffic increases for

166 Chapter 5

all topologies. As the cycle time increases, the total bandwidth of each cy-

cle increases (though the total number of cycles in a hypercycle decreases),

more requests can be mapped to the same cycle thus improving the total

accepted traffic.

Figure 5.10: Topology for the pan-European COST239 network. The label
corresponding to each link is its length (in kms).

20 40 80 160 240 480
Cycle time (Tc)

0

20

40

60

80

%
 a

cc
ep

te
d

tra
ffi

c

COST239
GRD
TS

Figure 5.11: The influence of Tc on the percentage of the total accepted traffic
for |R| = 50 for the COST239 network.

The cycle time also impacts the end-to-end delay between the source

and the destination. As described in [3], the end-to-end delay de2e on path

Routing and Scheduling for 1+1 Protected DetNet flows 167

p with N nodes (including source and destination) and cycle time Tc are

related as : de2e = (N − 1)dtxni,nj
+ (N − 2)(dprocnj

+ 2Tc). The average end-

to-end delay for | R |= 50 between the endpoints of the accepted requests

on the six topologies is depicted in Fig. 5.12. As expected, the end-to-end

delay increases with increasing cycle time as packets have to be queued for

a longer time.

20 40 80 160 240 480
Cycle time (Tc)

0

1000

2000

3000

4000

5000

6000

E2
E

de
la

y
(
s)

COST239
GRD
TS

Figure 5.12: The influence of Tc on the average end-to-end delay for |R| = 50
for the COST239 network.

5.7 Conclusion

Packet losses due to network congestion can be addressed using DetNet

mechanisms such as CSQF. To guarantee protection against failures in the

network, a scheme like 1+1 is required. The problem of 1+1 RTSCH for

DetNets was investigated in this paper. To allow reliable recovery, the

packet schedules on the two selected paths should take into account the

end-to-end delays. To this end, we formulated the 1+1 RTSCH problem as

an ILP. We proposed two additional approaches: greedy and Tabu-search

heuristics, that are scalable for relatively large problem sizes. Performance

evaluation of these approaches highlights the influence of the topology and

request set size on the average accepted traffic. Although the ILP approach

is exact, it is infeasible beyond small-sized problem instances. The GRD and

TS heuristic trade-off on the solution quality (< 10%) for its speed such that

reasonable size problem instances can be solved in a few seconds which the

ILP approach would require several hours to solve.

Moreover, the trade-off of choosing Tc on total accepted traffic and the end-

168 Chapter 5

to-end delay was also discussed.

Professional media flows can be reliably transported using CSQF in a Det-

Net. The future work will include the modeling of RTSCH for media services

that are represented by Virtual Media Function Forwarding Graphs (VMF-

FG) in contrast to simple services consisting of just source-destination pairs.

5.8 Acknowledgements

This research was funded by the Flemish FWO SBO S003921N VERI-

END.com (Verifiable and elastic end-to-end communication infrastructures

for private professional environments) project, by the FWO project under

grant agreement #G055619N and the Flemish Government under the ”On-

derzoeksprogramma Artificiele Intelligentie (AI) Vlaanderen”.

Routing and Scheduling for 1+1 Protected DetNet flows 169

References

[1] E. Grossman, C. Gunther, P. Thubert, P. Wetterwald, J. Raymond,

J. Korhonen, Y. Kaneko, S. Das, Y. Zha, B. Varga, et al. Deterministic

networking use cases. IETF draft, 2018.

[2] N. Finn, P. Thubert, B. Varga, and J. Farkas. Deterministic networking

architecture. draft-ietf-detnet-architecture-03 (work in progress), 2017.

[3] M. Chen, X. Geng, and Z. Li. Segment Routing (SR) Based Bounded

Latency. Internet Engineering Task Force, Internet-Draft draft-

chendetnet-sr-based-bounded-latency-00, 2018.

[4] N. Sprecher and A. Farrel. Rfc 6372-mpls transport profile (mpls-

tp) survivability framework. IETF MPLS Working Group (MWP),

Internet-Draft, 2011.

[5] J. Krolikowski, S. Martin, P. Medagliani, J. Leguay, S. Chen,

X. Chang, and X. Geng. Joint routing and scheduling

for large-scale deterministic IP networks. Computer Com-

munications, 165:33 – 42, 2021. Available from: http:

//www.sciencedirect.com/science/article/pii/S0140366420319642,

doi:https://doi.org/10.1016/j.comcom.2020.10.016.

[6] IEEE Standard for Local and Metropolitan Area Networks–Timing

and Synchronization for Time-Sensitive Applications. IEEE Std

802.1AS-2020 (Revision of IEEE Std 802.1AS-2011), pages 1–421, 2020.

doi:10.1109/IEEESTD.2020.9121845.

[7] S. Lindner, D. Merling, M. Häberle, and M. Menth. P4-Protect: 1+ 1

Path Protection for P4. arXiv preprint arXiv:2001.11370, 2020.

[8] IEEE Standard for Local and metropolitan area networks–

Frame Replication and Elimination for Reliability. 2017.

doi:10.1109/ieeestd.2017.8091139.

[9] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,

M. Reisslein, and H. ElBakoury. Ultra-low latency (ULL) networks:

The IEEE TSN and IETF DetNet standards and related 5G ULL

research. IEEE Communications Surveys & Tutorials, 21(1):88–145,

2018.

[10] S. S. Craciunas and R. S. Oliver. SMT-based task-and network-level

static schedule generation for time-triggered networked systems. In Pro-

ceedings of the 22nd international conference on real-time networks and

systems, pages 45–54, 2014.

http://www.sciencedirect.com/science/article/pii/S0140366420319642
http://www.sciencedirect.com/science/article/pii/S0140366420319642

170 Chapter 5

[11] N. G. Nayak, F. Dürr, and K. Rothermel. Time-sensitive software-

defined network (TSSDN) for real-time applications. In Proceedings

of the 24th International Conference on Real-Time Networks and Sys-

tems, pages 193–202, 2016.

[12] F. Dürr and N. G. Nayak. No-Wait Packet Scheduling for IEEE

Time-Sensitive Networks (TSN). In Proceedings of the 24th Inter-

national Conference on Real-Time Networks and Systems, RTNS ’16,

page 203–212, New York, NY, USA, 2016. Association for Computing

Machinery. Available from: https://doi.org/10.1145/2997465.2997494,

doi:10.1145/2997465.2997494.

[13] W. Steiner. An Evaluation of SMT-Based Schedule Synthesis for Time-

Triggered Multi-Hop Networks. In Proceedings of the 2010 31st IEEE

Real-Time Systems Symposium, RTSS ’10, page 375–384, USA, 2010.

IEEE Computer Society. Available from: https://doi.org/10.1109/

RTSS.2010.25, doi:10.1109/RTSS.2010.25.

[14] S. S. Craciunas, R. S. Oliver, M. Chmeĺık, and W. Steiner.

Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sen-

sitive Networks. In Proceedings of the 24th International Con-

ference on Real-Time Networks and Systems, RTNS ’16, page

183–192, New York, NY, USA, 2016. Association for Computing Ma-

chinery. Available from: https://doi.org/10.1145/2997465.2997470,

doi:10.1145/2997465.2997470.

[15] S. Chen, J. Leguay, S. Martin, and P. Medagliani. Load Balancing for

Deterministic Networks. In 2020 IFIP Networking Conference (Net-

working), pages 785–790. IEEE, 2020.

[16] Dynamic Multipath Optimization. Technical report, VMware, 2020.

Available from: http://wan.velocloud.com/rs/098-RBR-178/images/

sdwan-678-dynamic-multipath-optimization-wp-1119.pdf.

[17] Y. E. Oktian, S. Lee, H. Lee, and J. Lam. Distributed SDN controller

system: A survey on design choice. computer networks, 121:100–111,

2017.

[18] F. P.-C. Lin and Z. Tsai. Hierarchical edge-cloud SDN controller sys-

tem with optimal adaptive resource allocation for load-balancing. IEEE

Systems Journal, 14(1):265–276, 2019.

[19] E. L. Qiang, X. Geng, B. Liu, E. T. Eckert, and L. Geng. Large-Scale

Deterministic IP Network. Internet Engineering Task Force, Internet-

Draft draft-qiang-detnet-large-scale-detnet-05, 2020.

https://doi.org/10.1145/2997465.2997494
https://doi.org/10.1109/RTSS.2010.25
https://doi.org/10.1109/RTSS.2010.25
https://doi.org/10.1145/2997465.2997470
http://wan.velocloud.com/rs/098-RBR-178/images/sdwan-678-dynamic-multipath-optimization-wp-1119.pdf
http://wan.velocloud.com/rs/098-RBR-178/images/sdwan-678-dynamic-multipath-optimization-wp-1119.pdf

Routing and Scheduling for 1+1 Protected DetNet flows 171

[20] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring Network

Structure, Dynamics, and Function using NetworkX. In G. Varoquaux,

T. Vaught, and J. Millman, editors, Proceedings of the 7th Python in

Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

6
End-to-end Scheduling for

Wired-wireless Mixed Networks

The previous two chapters presented scheduling mechanisms that provide

guarantees on end-to-end delay and jitter in wired networks. While such

mechanisms have been around in the wired domain for many years, the fea-

sibility of such mechanisms has been demonstrated in the wireless domain

recently. Supporting time-sensitive applications in a mixed network that

consists of both wired and wireless links necessitates packet scheduling on

all the links on the routed path.

This chapter deals with the problem of end-to-end scheduling for time-sensitive

flows on wired-wireless mixed networks. The problem is formulated as an

ILP and a greedy heuristic is presented to solve the large-scale problem in-

stances.

⋆ ⋆ ⋆

G.P. Sharma, W. Tavernier, D. Colle, M. Pickavet, J.
Haxhibeqiri, J. Hoebeke, and I. Moerman

Submitted to Computer Communication, 2022.

Abstract Proprietary communication technologies for time-critical commu-

nication in industrial environments are being replaced with Time-Sensitive

174 Chapter 6

Networking (TSN) -enabled Ethernet. Furthermore, attempts have been

made to bring TSN features in wireless networks so that wireless flexibility

can be exploited and at the same time, the end-to-end timings for Time-

Triggered (TT) flows can be guaranteed. Given a wired-wireless mixed

network, the scheduling problem should be solved for a given set of TT flow

requests. In this paper, we formulate the scheduling problem for wired-

wireless mixed networks as an Integer Linear Programming (ILP) model.

Next, a greedy-based heuristic is proposed to solve the realistic-sized in-

stances of the problem. Evaluation results show that the greedy heuristic

is suitable for realistic problem sizes where the ILP approach is found to be

infeasible. Furthermore, the impact of wireless requests on the performance

of the greedy heuristic is reported.

6.1 Introduction

Owing to its cost-effectiveness and maturity, Ethernet has been a defacto

link-layer technology in standard communication networks. However, in-

dustrial environments are traditionally dominated by proprietary commu-

nication technologies such as Time-Triggered Ethernet (TTEthernet) and

EtherCAT that are inflexible and costly but guarantee timely delivery of

Time Sensitive (TS) traffic. In order to bring time sensitivity in Ether-

net, the IEEE 802.1 Time-Sensitive Networking (TSN) Task Group (TG)

released a suite of standards in 2012 [1]. This suite of standards specifies

various mechanisms (e.g., time-synchronization, time-aware shaping) aimed

at enabling the co-existence of Time-triggered (TT) traffic that requires

end-to-end timing guarantees along with standard Best-Effort (BE) traffic

flows that do not need any timing assurances.

Time-Aware Shaping (TAS) or IEEE 802.1Qbv is one of the TSN compo-

nents that emulates Time Division Multiple Access (TDMA) on each egress

port [2]. The transmission time on links is divided into time slices that are

assigned to each TT flow, thus ensuring no interference from other TT or

BE flows.

Wireless networks offer several advantages in comparison to wired networks.

A wireless network interconnecting several devices can be deployed quickly

without requiring complex cable installation thus resulting in cost savings.

It also enables connectivity of endpoints that are not accessible for ca-

bles, especially in dynamic industry environments (e.g., for mobile robots

or moving machine parts). Other advantages include easier reconfigura-

bility of factory settings and scalability. Owing to the evolution of high-

speed wireless networking and the above advantages, networks consisting

of both wired and wireless segments are prevalent in all kinds of industry

End-to-end Scheduling for Wired-wireless Mixed Networks 175

environments [3]. End-to-end guarantees in such mixed wired-wireless net-

works can be provided by implementing TSN mechanisms in wireless, in

addition to wired links. The implementation of such a TSN mechanism

in wireless has been gaining some attention, recently. In [4], a Proof-of-

Concept (PoC) for wireless TSN has been demonstrated, which is based

on WiFi-based Software Defined Radio (SDR) called Openwifi [5]. The

PoC implements time-synchronization and time-aware shaping in the wire-

less domain. Considering the possibility of wireless TSN, the problem of

scheduling TT flows on a given wired-wireless mixed network still remains a

challenge. The end-to-end scheduling problem has been addressed for wired

TSN widely [6], [7], [8]. However, modeling of the end-to-end scheduling

problem for a wired-wireless mixed network is not straightforward because

of these reasons: (i) difference in transmission speeds of wired and wire-

less links, (ii) half-duplex communication in wireless links as opposed to

that of wired links and (iii) sharing of wireless links among Wireless Access

point (WAP) and multiple endpoints. To this end, this paper addresses the

scheduling problem for wired-wireless mixed networks. More concretely, the

contributions of this paper are as follows:

1. We propose a transformation of the wireless link as a graph consisting

of only simplex links. This transformation simplifies the modeling

of wireless links in the mixed network and simplifies the scheduling

algorithm.

2. An ILP model representing the scheduling problem for a wired-wireless

mixed network is presented. A greedy-based heuristic method is pro-

posed, as the ILP approach is not feasible beyond small-size problem

instances.

3. Finally, we extensively evaluate the proposed ILP and greedy heuristic

on two different topologies via simulation experiments.

The remainder of the article is organized as follows: Section 6.2 provides a

survey of the key related works. The system model along with the prob-

lem statement is presented in section 6.3. The ILP formulation for the

mixed network wired-wireless scheduling problem is discussed in 6.4. Next,

a greedy-based heuristic algorithm is described in section 6.5. The ILP ap-

proach and heuristic are evaluated for scalability and performance in section

6.6. The paper is concluded in section 6.7.

176 Chapter 6

6.2 Related Works

Efforts to bring time sensitivity into Ethernet have been going on for several

years [9], [10]. The TSN-TG, a task group of IEEE 802.1 Working Group

(WG), has published a suite of standards targeting extensions to IEEE 802

networks that enable end-to-end deterministic connectivity, i.e, bounded de-

lays and jitter along with high availability [1]. The most relevant standards

in the suite are listed in Table 6.1.

Table 6.1: Overview of various TSN standards.

Standard Description
IEEE 802.1AS-Rev Timing and synchronization for time-sensitive

Applications [11].
IEEE 802.1Qav Prioritization of time-sensitive streams over

best-effort using Credit Based Shaper (CBS)
[12].

IEEE 802.1Qbv Scheduling of time-sensitive traffic using time-
aware shaping [2].

IEEE 802.1Qca Path control and reservation [13].
IEEE 802.1Qci Per-stream Filtering and Policing [14].
IEEE Std 802.1CB-
2017

Frame Replication and Elimination for Relia-
bility [15].

The IEEE 802.1Qbv aka Time-aware Shaping (TAS) specifies the mech-

anisms to implement TDMA in IEEE 802 networks [2]. The use of the TAS

entails the computation of routes and schedules based on the given network

and TT flow specifications. Earlier works on the TSN scheduling prob-

lem were mostly concerned with computing schedules for proprietary net-

works (e.g., TTEthernet, PROFINET), whereas recent works have focused

on computing schedules for TAS-enabled bridged networks. A Satisfiability

Modulo Theory (SMT) model was proposed by Tămaş–Selicean et al. to

solve the scheduling problem in TTEthernet [9]. Schweissguth et al. in [8]

have proposed an ILP to jointly solve the Routing and Scheduling problem

for TTEthernet networks. Hanzaelk et al. have formulated the scheduling

problem for Profinet in terms of the Resource-Constrained Project Schedul-

ing with Temporal Constraints and present an algorithm to solve it [16].

The No-wait Packet Scheduling Problem (NW-PSP) for the TAS-enabled

bridged network has been mapped to the No-wait Job-shop Scheduling Prob-

lem (NW-JSP) in [6] and is formulated as an ILP. Hellmanns et al. have

proposed and evaluated various optimizations for ILP-based TSN schedul-

ing in [17]. However, despite these optimizations, the ILP-based approach

to solve the TSN scheduling problem does not scale well with respect to

End-to-end Scheduling for Wired-wireless Mixed Networks 177

the network topology size and the total number of TT flows. This stems

from the fact that the TSN scheduling problem is an NP-hard problem and

thus the exact approaches such as ILP and SMT become infeasible for the

problem instances with large sizes.

To this end, various heuristics and meta-heuristics are proposed to return a

suboptimal solution for the problem quite faster than the exact approaches.

By compromising on the solution quality, the problem can still be solved for

the problem instances with large sizes. Durr et al. also presented a tabu-

search-based heuristic, as a faster alternative to the ILP approach, to solve

the NW-PSP problem [6]. Pahlevan et al. solved the joint routing and

scheduling algorithm using a Genetic Algorithm (GA) and demonstrated

that the proposed algorithm results in significant improvement in schedula-

bility, as well as flow-span over the List Scheduling (LS) approach [18]. An

improved Ant-Colony Optimization (ACO) was proposed by Yang et al. to

ensure deterministic end-to-end delay and jitter for TT traffic [19].

The aforementioned works are mainly focused on scheduling TT flows in a

TSN-capable wired network despite the fact that various wireless technolo-

gies such as 5G and WiFi have been extended to incorporate TSN features.

Haxhibeqiri et al. and Cavalcanti et al. have discussed, in detail, the

prerequisites, i.e., time-synchronization and traffic shaping, to extend TSN

capabilities in wireless networks [4], [20]. They also demonstrated a WiFi-

based TSN solution that can be synchronized within a few µs along with

an end-to-end latency of 3ms. The authors in [21] have discussed how the

key features in WiFi7 (IEEE802.11be) can be leveraged to implement TSN

functionalities to support low-latency communication. TSN-capable wired-

wireless networks are feasible, although the scheduling problem for such

mixed networks has not received serious attention. Ginthör et al. solved the

scheduling problem for a mixed network consisting of TSN and 5G bridges

using constraint programming while optimizing resource utilization [22]. As

per our knowledge, the scheduling problem for wired-WiFi mixed networks

has not been modeled or addressed yet. The SMT/ILP formulations and

heuristics existing in the literature to represent the scheduling problem in

wired TSN are not readily applicable to wired-WiFi mixed networks for

the reasons explained in section 6.3. Therefore, an ILP formulation and a

greedy-based heuristic are presented in this paper to address the problem.

6.3 Problem Statement

To achieve end-to-end timing guarantees for TT flows with TAS in a wired-

wireless mixed network, a gating mechanism for all the classes of traffic is

required in every node, as shown in Fig. 6.1. Each egress port of the TAS-

178 Chapter 6

capable switch has multiple queues, each corresponding to a traffic class. A

frame is assigned to a queue based on the Priority Code Point (PCP) in the

VLAN tag of the frame and a configurable mapping of the PCP values to

the hardware queues. The logic for queue selection for transmission at an

egress port is based on the Gate Control List (GCL) for that egress port.

A GCL contains a sequence of entries, each containing the duration of the

entry and a bit-mask indicating the queues that are allowed transmission

until the start of the next entry. Strict priority queuing is used for trans-

mission selection, in case two queues have packets to transmit at the same

time. The total duration of GCL entries is called the cycle time, denoted

by T cyc, i.e., the GCL sequence repeats itself after T cyc interval.

We assume one queue is reserved at each egress port for TT traffic and its

frames are assigned to this queue after selecting the egress port. We also

apply the no-wait constraint to TT flows. In other words, the TT traffic’s

frame traverses through the routed path from the source to the destination

without queuing at any intermediate node. With the no-wait constraint,

the network offers the minimum possible delay on the routed path as the

queuing delay in each node is zero.

It can be safely assumed that all nodes (switches, WAPs and endpoints), of

the network, are synchronized (e.g., using Precision Time Protocol) within

µs accuracy and are capable of adhering to the schedules they are con-

figured with. This entails that the wireless nodes (WAP and endpoints)

sharing the wireless medium can only transmit during their allocated time

slots thus avoiding packet collision even within the shared medium. Given

such guarantees, it is thus possible to determine the packet arrival time

at any point on the routed path in a wired-wireless mixed network thus

guaranteeing end-to-end delay. Next, we describe the system model and

introduce the scheduling problem for wired-wireless mixed networks.

6.3.1 Model Description

The set of requests corresponding to the TT flows that need to be scheduled

is denoted by R. For each request r ∈ R, a six-valued tuple (nsrc
r , ndst

r , Fr,

fsizer, Tr, D
e2e
r) is used to represent the attributes of each flow request.

Here, nsrc
r and ndst

r denote the requested flow’s source and destination nodes,

respectively. The flow request r produces a total of Fr frames, each equal

to fsizer bytes every Tr seconds. A request source, e.g., camera, might

produce multiple fsizer sized frames in a cycle duration thus Fr ≥ 1. Tr

denotes the time period corresponding only to request r. The period of all

requests in R need not be equal. We denote the common period (hyper-

period) of all requests as T cyc, i.e., the minimum time that is a period of all

the requests; T cyc = LCM({Tr : ∀r ∈ R}). This is equal to the cycle time

End-to-end Scheduling for Wired-wireless Mixed Networks 179

Gate Gate Gate

...

BE traffic queues

TS traffic

queue q
7

q
6

q
0

t
0

t
1

t
2

t
3

01111111

00000000
10000000
01111111

Gate-control list

Transmission selection

Figure 6.1: Typical architecture of an egress port supporting TAS (IEEE
802.1Qbv).

of the GCL sequence in each node of the network. At the start of every

request cycle (Tr), Fr frames are produced by nsrc
r that need to be sched-

uled in the next Tr seconds. Therefore, the number of frames that needs

to be scheduled in cycle time T cyc is F cyc
r = (T cyc/Tr)Fr. The maximum

allowable end-to-end delay for request r ∈ R is denoted by De2e
r .

The topology of the wired-wireless mixed network is represented by a di-

rected graph G = (N , E). The endpoints and switching nodes (TSN switches

and WiFi APs) form the set of nodes N ; whereas, E denotes the set of physi-

cal (wired and wireless) links between the nodes. The forwarding nodes are

capable of implementing TAS for TT flows, i.e., they comply with IEEE

802.1Qbv. In our model, we consider two types of delays– transmission de-

lay and processing delay. The processing delay of node is denoted by dprocn

and transmission delay for r’s frame on link (ni, nj) is denoted by dtransr,ni,nj

(= fsizer/Bni,nj
), where Bni,nj

is the link speed in Bps. dtransr,ni,nj
deter-

mines the duration for which the gate for the TT queue on node ni (on

output port corresponding to (ni, nj)) should be opened to let the frame

to be transmitted. We have ignored the contribution of propagation delay

(< 1% of Tr) as it is not significant in a LAN environment (e.g., factory

network). p denotes a path on the network consisting of ordered list of

nodes; whereas ϵp is the ordered list of edges in path p. Dp,ni
is the delay

180 Chapter 6

along path p starting from the source node (p[0]) until the last node (ni);

this includes the transmission delay by ni. Dp is the delay along path p

until the last node (p[−1]) of p.

∀r ∈ R, a route must be determined from nsrc
r to ndst

r . We assume that a

maximum of K shortest paths between nsrc
r and ndst

r are predetermined us-

ing off-the-shelf routing algorithms, and passed as an input to the model to

compute transmission schedules on one of these routes. This pre-processing

vastly reduces the number of variables in the ILP model and thus reduces

the solve time significantly [17].

6.3.2 Wireless link Modeling

Despite wireless nodes being capable of TAS, the computation of end-to-end

scheduling of TT flows in wired-wireless mixed networks is generally more

complex. Firstly, the transmission speed of the wireless link is sensitive to

variable channel conditions. The interference can come from other wireless

networks as WiFi operates in unlicensed frequency bands. The throughput

value of the wireless link assumed in our model is 9 Mbps. Though WiFi

supports higher transmission rates, choosing a relatively lower value results

in higher reliability. Even though it can be ensured that the wireless nodes

in the given network are allowed to transmit only during their allocated

time slots, external interference is still possible. Thus it might be required

to perform multiple re-transmissions to realize a successful end-to-end frame

delivery of a TT flow. Here, we consider the case where the first transmis-

sion attempt is successful. However, the model can be further extended to

allocate time slots for multiple re-transmissions to ensure a given reliabil-

ity threshold is achieved. As explained next, an additional challenge is to

model the given wired-wireless mixed topology such that a given scheduling

algorithm can take it as an input.

The half-duplex wireless links are shared by multiple endpoints and the

WAP whereas a wired link is always point-to-point and full-duplex. There-

fore, computing the transmission schedule on the wireless link becomes com-

plicated. To simplify the scheduling problem, the original wireless link (Fig.

6.2 (a)) can be modeled as a graph (Fig. 6.2 (b)) consisting of the WAP,

additional dummy nodes and dummy links. nap is connected to two dummy

nodes– nin−ap and nout−ap via simplex links and the two dummy nodes are

connected to each via another simplex link (nin−ap, nout−ap). The dummy

nodes nin−ap and nout−ap have 0 processing delay, whereas the processing

delay of nap is the same as that of the original AP. The links (ni, n
in−ap),

(nout−ap, ni), (n
ap, nin−ap) and (nout−ap, nap) all have 0 transmission de-

lay (or ∞ bandwidth). The link (nin−ap, nout−ap) represents the medium

End-to-end Scheduling for Wired-wireless Mixed Networks 181

shared between the WAP and its connected endpoints and has a bandwidth

equal to the (minimum) wireless bandwidth. It can be seen that the half-

duplex property of the wireless link is maintained in Fig. 6.2 (b), as any

communication between the WAP and an endpoint or among endpoints

themselves is traversed over (nin−ap, nout−ap) thus ensuring only one node

is transmitting at a particular time.

Using the above transformation, each half-duplex wireless link can be bro-

ken into a subgraph consisting only of simplex links. Therefore, the given

wired-wireless mixed network denoted by G = (N , E) can be transformed

into a network, denoted by G = (N,E), consisting only of simplex or full-

duplex links. Tab. 6.2 lists the notations used for various parameters and

sets along with their short description.

n
w

nap

n
1

n
2

n
3

n
w

n
1

n
2

n
3

nin-ap nout-ap

nap

(a) (b)

Figure 6.2: (a) Half-duplex wireless link modeled as (b) a graph consisting of
dummy nodes and simplex links. The half-duplex property of the wireless link is

retained by ensuring all communication traverses the dummy link
(nin−ap, nout−ap).

6.3.3 Problem Definition

In IEEE 802.1Qcc, the centralized configuration model for TSN is described,

wherein a central entity aka Centralized Network Controller (CNC) has a

global view of the complete network and manages all nodes; this includes

wireless APs as well as wireless endpoints. The architectural model for a

centrally controlled wired-wireless mixed TSN is depicted in Fig. 6.4. The

CNC is mainly responsible for (i) discovering the network topology that in-

cludes capturing the capabilities of various nodes and (ii) configuring nodes

with appropriate GCLs. The GCLs are computed by the scheduler, a com-

182 Chapter 6

ponent of the CNC, based on the specifications of TT traffic (R) and the

given network topology G (with delay parameters). As topology discovery

for wired-wireless mixed networks is not the subject of this article, we will

focus only on the scheduling aspect. We assume the scheduler is provided

with the global view of the network along with delay parameters and the

request set.

The end-to-end scheduling problem can be defined as the problem of com-

puting the end-to-end optimized schedules for all TT flow requests given

the topology graph of a wired-wireless mixed network and requests’ specifi-

cations. The optimization criterion considered in our model is the flow-span

time. The flow-span time is defined as the maximum injection time among

all TT flows with respect to the start of the request cycle (Tr). Fig. 6.3

shows the frame injection times (length of arrows) of a request r; where

Fr = 2 and T cyc = 4Tr thus F cyc
r = 8. Here, the request flow-span corre-

sponds to the relative injection time of frame 7 as it has the longest relative

injection time.

By choosing flow-span as our optimization, we make sure that the TT flow

frames are not queued at the source node for too long, thereby reducing the

end-to-end delay.

0 1 2 3 4 5 6 7

Tcyc = 4T
r

T
r

request flow-span

Figure 6.3: Illustration for the maximum flow-span of request r. The length of
each dotted arrow indicates its injection time relative to the start of the request’s
cycle. The flow-span of this request corresponds to the relative injection time (in

blue) of frame 7.

With the no-wait constraint, the scheduling problem boils down to the

computation of the solution consisting of (i) the routed path and ii) the

injection times for all TT flow requests. Using this solution and the delay

along the routed path, the gate opening and closing times at each interme-

diate node are determined, along with the guard times to prevent the BE

traffic from interfering with the scheduled TT traffic [6]. The gate opening

and closing times are then used for the generation of the GCL for network

End-to-end Scheduling for Wired-wireless Mixed Networks 183

nodes. The CNC configures each node in the network with the GCL so that

all TT flow requests are supported.

n
r

dst

n
r

src

soln: route+schd

WAP

scheduler

G

R

CNC topology discovery

Figure 6.4: Overview of the end-to-end scheduling problem in a wired-wireless
mixed network. The red, blue and grey boxes represent the endpoints, WAP and

switching nodes in the network, respectively.

6.4 ILP formulation

In this section, we present the ILP formulation for the end-to-end schedul-

ing problem for wired-wireless mixed networks. Here, we describe the ILP

objective function along with various constraints that ensure end-to-end

guarantees are given to TT flows. Tab. 6.2 lists the notations used for all

variables involved in the ILP formulation along with their short description.

6.4.1 Constraints

Each request should be mapped to exactly one physical path in G. The

constraint in (6.1) ensures that only one path is selected for routing request

r ∈ R out of K shortest paths between nsrc
r and ndst

r .

∑

p∈Pr,K

γr,p = 1, ∀r ∈ R. (6.1)

184 Chapter 6

Table 6.2: Description of the notations used for the parameters and variables
involved in the system model.

Notation Description
R The set of requests that need to be routed

and scheduled on a given Time-Sensitive Network
(TSN). Each request r ∈ R is associated with a tu-
ple T = (nsrc

r , ndst
r , Fr, Tr, D

e2e
r), where nsrc

r , ndst
r

and Tr are request’s source node, destination node,
total frames and time period, respectively. The
set of all frames that needs to be transmitted by
request r during request period Tr is denoted by
Fr = {f : 0 ≤ f ≤ Fr − 1}

T cyc The lowest time interval that is a period of all the
requests, i.e., T cyc = LCM({Tr : ∀r ∈ R}). De2e

r

is the maximum allowable end-to-end delay for all
frames of request r ∈ R; this is relative to the start
of the last common cycle (T cyc).

F cyc
r The total number frames of request r ∈ R during

T cyc, i.e., F cyc
r = (T cyc/T r)F . The set of frames

during T cyc is denoted by Fcyc
r1

= {f : 0 ≤ f ≤
F cyc
r }

G = (N,E) Directed graph representation of the network,
where N is the set of nodes (switches, APs and
endpoints) and E is the set of physical links be-
tween the nodes.

dpropni,nj
The propagation delay on physical link (ni, nj) ∈
E.

dtransni,nj
The transmission delay on physical link (ni, nj) ∈
E.

dprocn The frame processing time of node n ∈ N .
Pr,K K shortest paths between nodes nsrc

r and ndst
r for

request r ∈ R; p ∈ Pr,K is an ordered list of nodes
from nsrc

r to ndst
r .

ϵp Ordered list of edges in path p.
Dp,ni

The delay along path p starting from p[0] up to
node ni ∈ p.

Dp The delay along path p starting from p[0] up to
p[−1].

γr,p The decision variable indicates if r ∈ R is mapped
to a physical path p.

ρ
ni,nj

r1,p1,f1,r2,p2,f2
The decision variable indicates that frame f1 ∈
Fcyc

r1
of request r1 ∈ R’s frame is scheduled before

frame f2 ∈ Fcyc
r2

of request r2 ∈ R(̸= r1)’s on the
common link (ni, nj) of the routed paths p1 and p2
of r1 and r2, respectively.

tinr,f The continuous decision variable is the injection
time of frame f ∈ Fcyc

r of request r ∈ R at the
source node; tinr,f is relative to the start of the last
common cycle (T cyc).

End-to-end Scheduling for Wired-wireless Mixed Networks 185

No-wait scheduling disallows frames to be queued on the routed path. There-

fore, any two frames from two requests that are routed on a common physical

link cannot be transmitted such that they overlap at any time. To avoid the

overlap of two frames: f1 ∈ Fcyc
r1

and f2 ∈ Fcyc
r2

on physical link (ni, nj),

either the transmission of f1 should end before the start of f2’s transmission

or the transmission of f2 should end before the start of f1’s transmission.

The pair of constraints in (6.2 and 6.3) ensures this condition.

tinr1,f1 − tinr2,f2 +M1(ρ
ni,nj

r1,p1,f1,r2,p2,f2
) +M2(2− γr1,p1

− γr2,p2
)

≥ Dp2,ni
−Dp1,ni−1 − dprocni

,

∀r1, r2 ∈ R(r1 ̸= r2), ∀f1 ∈ Fcyc
r1

, ∀f2 ∈ Fcyc
r2

,

∀p1, p2(̸= p1) ∈ Pr,K , ∀(ni, nj) ∈ ϵp.

(6.2)

tinr2,f2 − tinr1,f1 +M1(1− ρ
ni,nj

r1,p1,f1,r2,p2,f2
) +M2(2− γr1,p1

− γr2,p2
)

≥ Dp1,ni
−Dp2,ni−1 − dprocni

,

∀r1, r2 ∈ R(r1 ̸= r2), ∀f1 ∈ Fcyc
r1

, ∀f2 ∈ Fcyc
r2

,

∀p1, p2(̸= p1) ∈ Pr,K , ∀(ni, nj) ∈ ϵp.

(6.3)

Here, D(p1, ni) is the delay up to node ni on path p1 starting from the

source node (nsrc
r). M1 and M2 are arbitrary constants greater than the

maximum value of the RHS in (6.2) and (6.3).

The indicator variable ρ
ni,nj

r1,p1,f1,r2,p2,f2
indicates the order of transmission of

frames f1 and f2 on (ni, nj), when f1 and f2 are routed on the same physi-

cal link (ni, nj). If paths p1 and p2 are selected for routing requests r1 and

r2, respectively, then γr1,p1
= γr2,p2

= 1. Moreover, if ρ
ni,nj

r1,p1,f1,r2,p2,f2
= 0,

the constraint in (6.3) becomes inactive, whereas the constraint in (6.2) is

simplified to tinr1,f1 ≥ tinr2,f2 + constant thus f1’s transmission precedes f2’s.

Conversely, if ρ
ni,nj

r1,p1,f1,r2,p2,f2
= 1, the constraint in (6.2) becomes inactive,

whereas the constraint in (6.3) is simplified to tinr2,f2 ≥ tinr1,f1 + constant

thus f2’s transmission precedes f1’s. The second constraint in the pair is

depicted in Fig. 6.5.

The transmission of any two frames f1, f2 ∈ Fcyc
r , f1 ̸= f2 of the same

request r ∈ R should not overlap with each other in the time domain. This

condition is enforced by the constraint in (6.4);
∑

p∈Pr,K

max(ni,nj)∈ϵp ensures

that temporal overlap does not happen on any physical link of the routed

186 Chapter 6

r
1

r
2

n
i n

j

p
1

p
2

D(p
1
, n

i
-1)

D(p2
, ni

)

tin
r1

 + D(p
1
, n

i
-1) + d

proc

tin
r2

 + D(p
2
, n

i
)

if ρ=0
constraint 2 is active

t

Figure 6.5: Overview of the frame overlap constraint. f2 of r2 is transmitted
before f1 of r1 on common link (ni, nj).

path.

tinr,f1 +
∑

p∈Pr,K

max
(ni,nj)∈ϵp

γr,pd
trans
r,ni,nj

≤ tr,f2 , ∀r ∈ R, f1 ∈ Fcyc
r , f2 = f1 + 1.

(6.4)

As r ∈ R can have different time-periods, we schedule all requests for

a common time period or cycle time T cyc. However, for all requests, Fr

frames should be scheduled during their own period Tr, i.e., the injection

time of f should occur in the ⌊f/Fr⌋’th time period. The constraint in (6.5)

ensures this.

⌊f/Fr⌋Tr ≤ tinr,f ≤ (⌊f/Fr⌋+1)Tr−
∑

p∈Pr,K

max
(ni,nj)∈p

γr,pd
trans
r,ni,nj

, ∀r ∈ R, f ∈ Fcyc
r .

(6.5)

The summation on the RHS of (6.5) ensures that the frame transmission

finishes before the end of the period. The end-to-end delay of a request

cannot exceed the corresponding application requirement. The constraint

below (6.6) ensures that the end-to-end delays are bounded by the given

limit.

(tinr,f − ⌊f/Fr⌋Tr) +
∑

p∈Pr,K

γr,pDp ≤ De2e
r , ∀r ∈ R, ∀f ∈ Fcyc

r . (6.6)

The constraint in (6.7) ensures that the binary decision variables can only

End-to-end Scheduling for Wired-wireless Mixed Networks 187

take values in {0, 1} and the injection time is non-negative.

γr,p, ρ
ni,nj

r1,p1,f1,r2,p2,f2
∈ {0, 1}, tinr,f ≥ 0;

∀r, r1, r2(̸= r1) ∈ R, ∀p, p1, p2 ∈ Pr,K , ∀f, f1, f2(̸= f1) ∈ Fcyc
r

(6.7)

6.4.2 Objective function

The objective function in (6.8) minimizes the maximum flow-span among

all frames of all requests. For a given frame f ∈ F cyc
r of request r ∈ R,

the flow-span is calculated with respect to the start of the period of f , i.e,

⌊f/Fr⌋Tr).

obj : min max
∀r∈R,∀f∈Fcyc

r

(tinr,f − ⌊f/Fr⌋Tr). (6.8)

6.5 Heuristic

In this section, we describe the greedy-based heuristic, which is a scalable

alternative to the ILP approach to solving the wired-wireless mixed network

scheduling problem.

The greedy heuristic iteratively considers each TT flow request and attempts

to schedule it on the given network. While scheduling a frame of a given

request, the smallest injection time, for which there is no interference (i.e,

no-wait constraint) from the frames of the already scheduled requests, is

chosen. The pseudocode of the proposed greedy algorithm is discussed next

in detail.

The procedure in Alg. 6.3 is the main procedure for the greedy heuristic.

The given set of requests are first sorted based on crit criterion using pro-

cedure reqs order (l. 3). Next, scheduling of each request in the sorted

set is attempted via sch req (l. 5). For example, a given set of requests

can be sorted in the ascending order of the request period (Tr). After the

request ordering step, requests with smaller Tr are scheduled first and the

ones with longer Tr are scheduled last.

In Alg. 6.2, the frame injection times of the considered request are ini-

tialized with ⌈f/Fr⌉Tr (minimum possible injection time) (l. 2). The pair

of for loops (l. 3-8) iteratively goes through the paths in ∀p ∈ Pr,K and

terminates if ∀f ∈ Fcyc
r can be scheduled on it and the injection time meets

the end-to-end delay requirements. If a path can schedule all frames (l. 9),

the path (p) and corresponding injection times (tinr) are returned; otherwise,

ϕ, ϕ are returned.

In order to satisfy the no-wait constraint, no two frames should overlap in

time at any of the common edges of their routed paths. To this end, we

identify the time windows at the source of r that are forbidden, i.e, that

188 Chapter 6

cause time overlap with other scheduled requests. Procedure sch fr pth (in

Alg. 6.1) is responsible for computing injection time (≥ tin) of a frame on

path p, given frame injection times of other scheduled requests (soln tin).

tfrb, a list of forbidden injection time windows, is first initialized with []

(l. 2). For each frame (fo) of the already scheduled request (ro), the ar-

rival time (tarrro,fo) on an overlapping edge ((ni, nj) ∈ ovrlp edges(p, po)) is

computed (l. 8). Using tarrro,fo , forbidden time window(s) are computed by

subtracting the path delay on p until the overlapping edge (l. 9) and added

to list tfrb (l. 10-11). If the forbidden window continues beyond Tcyc, two

windows per cycle are added to tfrb (l. 12-14). A feasible injection time

(≥ tin, < tin + Tr − dtrans) that is not forbidden in tfrb is returned by

tin frm twnds (l. 15).

Algorithm 6.1: Pseudo-code for the procedure responsible for de-
termining an injection time for a frame.

1 Procedure sch fr pth(r, p, soln pth, soln tin, tin):

2 tfrb ← [] ; // sorted list of forbidden time windows at the

source

3 for ro ∈ soln pth do

4 po ← soln pth[ro];
5 for (ni, nj) ∈ ovrlp edges(p, po) do

6 dtrans
ro,ni,nj

← (ro.fsize)/Bni,nj
;

7 for fo ∈ [0, |F cyc
ro | − 1] do

8 tarrro,fo ← soln tin[ro, fo] +Dro,po,ni−1 + dprocni
;

// arrival time of fo at node ni

9 tsrc ≡ tarrro,fo −Dr,p,ni−1 − dprocni
(mod T cyc);

10 if tsrc + dtrans
ro,ni,nj

≤ T cyc then

11 tfrb.append((tsrc, tsrc + dtrans
ro,ni,nj

));

12 else

13 tfrb.append((tsrc, T cyc));

14 tfrb.append((0, dtrans
ro,ni,nj

− (T cyc − tsrc)));

15 return tin frm twnds(tin, tin + Tr, t
frb, De2e

r) ; // return

smallest feasible injection time between tin and

tin + Tr − dtrans

16 end

6.6 Evaluations

Both approaches– ILP and greedy, return a feasible solution for the mixed

network wired-wireless scheduling problem that would guarantee that the

End-to-end Scheduling for Wired-wireless Mixed Networks 189

Algorithm 6.2: Pseudo-code for the procedure responsible for de-
termining the routing path and frame injection times for a request.

1 Procedure sch req(r, soln pth, soln tin):
2 tinr ← {f : ⌊f/Fr⌋Tr| ∀f ∈ F

cyc
r } ;

3 for p ∈ Pr,K do

4 for f ∈ Fcyc
r do

5 tin ← sch fr pth(r, p, soln pth, soln tin, tinr [f]) ; // get

f’s injection

6 if tin ̸= φ and tin +Dp ≤ De2e
r then tinr [f]← tin;

7 else break;

8 if tin ̸= φ then return (p, tinr);

9 return φ, φ ; // no feasible schedule found on any path

10 end

Algorithm 6.3: Pseudo-code for the main procedure responsible
for scheduling a given set of TT flow requests.

1 Procedure grd sch reqs(R, crit):
2 soln pth, soln tin ← {}, {};
3 Rord ← reqs order(R, crit) ; // sort requests in R with crit

criterion

4 for r ∈ Rord do

5 p, tinr ← sch req(r, soln pth, soln tin);
6 if p ̸= φ then

7 soln pth[r]← p ; // store routed path

8 soln tin[r]← tinr ; // store injection time of all frames

9 return soln pth, soln tin ; // return greedy solution

10 end

190 Chapter 6

timing requirement of all TT flow requests is met. However, an extensive

evaluation of the two is needed to compare their performance and identify

the scenarios where one is more beneficial than the other.

In this section, we discuss first the evaluation setup and then present the

results of our evaluations for the two approaches in terms of scalability,

scheduling performance and resource utilization.

6.6.1 Evaluation setup

The greedy heuristic was written in Python; whereas the ILP formulation

is done in DOcplex, a native Python modeling library for optimization, and

solved using the IBM’s ILOG CPLEX solver [23]. For both approaches,

NetworkX’s Python API is used for the (pre-)computation of K shortest

paths [24]. The experiments were performed on a PC with an Intel Core i5-

8265U processor running @ 2.40GHz with 16GB of RAM memory running

Ubuntu-18.04 OS.

Two kinds of topologies used for the evaluation– (i) ring topology (RING)

and (ii) mesh topology (MESH) as shown in Fig. 6.6. The ring and mesh

both consist of nine switch nodes, one WAP and twenty endpoint hosts.

While the number of nodes in the ring and the mesh is the same, the dif-

ferent amount of connectivity is expected to impact the performance of the

scheduling approach. To generate a request (r) in the set of TT flows (R),

we choose two randomly chosen (different) nodes in the given topology as

the endpoints (nsrc
r and ndst

r). The request’s period (Tr) can be chosen ran-

domly from set {1024, 2048, 4096}(µs); thus the overall cycle time (T cyc)

is 4096µs. The number of frames per period is Fr is one and the frame

size is randomly chosen from the set {50, 200, 500}B. The end-to-end delay

requirement for the request is chosen as 2Tr for all requests.

The values/ranges of relevant evaluation parameters are listed in Tab. 6.3.

In what follows, the labels– ILP and GRD refer to the ILP and greedy ap-

proach, respectively.

6.6.2 Results

Different evaluations were carried out to evaluate our approaches. We de-

scribe each evaluation and present the corresponding results separately. For

each evaluation, fifty experiment iterations were performed and the obser-

vations are reported. In each experimental iteration, a total of |R| TT flow

requests are generated as explained previously.

End-to-end Scheduling for Wired-wireless Mixed Networks 191

Table 6.3: Default values/range of various parameters involved in the evaluation.

Parameter Value or range Units
Topology RING, MESH -
Topology size 9, 3x3 -
Request time period (Tr) {2048, 4096, 8192} µs
Request frame size (fsize) {50, 200, 500} B
Request e2e delay (De2e

r) 2Tr µs
Wired Tx speed (Bwrd) 1000 Mbps
Wireless Tx speed (Bwl) 9 Mbps
Node processing time (dprocn) 50 µs

(a) (b)

Figure 6.6: Topologies used for the evaluation: (a) RING and (b) MESH.

192 Chapter 6

6.6.2.1 ILP and GRD Comparison

First, we compare the solve time, which is defined as the time required by

the algorithm to find the solution, of the two approaches for the same prob-

lem instances. The solve time (in log scale) ILP and GRD when scheduling

|R| = 25 requests are shown in Fig. 6.7. The solve time with MESH is more

as compared to RING because |Pr,K | ≤ 2, ∀r ∈ R in RING whereas |Pr,K | ≥ 2

for many requests in MESH. The greater number of paths between any two

endpoints in MESH as compared to RING results in an extremely large solu-

tion space due to the explosion in the number of decision variables (γ and

ρ).

Also, there are three orders of the magnitude speed difference between the

two approaches– ILP and GRD. This can be attributed to the fact that ILP

looks for an optimum solution whereas GRD returns a feasible greedy solu-

tion. Moreover, ILP appears to become impractical to solve for |R| ≥ 30 on

MESH where the CPLEX solver takes several hours to return the solution.

Fig. 6.8 plots the evolution of three main CPLEX solver’s parameters with

time: (i) the objective value (solution to the relaxed ILP at the particular

time), (ii) the integer solution and (iii) the lower bound (best achievable

integer solution) with time. Clearly, the CPLEX solver has to traverse

through the huge solution space of the problem though the returned (inte-

ger) solution was found quite early.

Next, we observe the maximum flow-span (time) percentage among all re-

quests. Here, we define a request’s flow-span time as the maximum delay

in the injection time of the frame relative to the start of the cycle as a

percentage of the request’s cycle duration (Tr). The maximum flow-span

indicates schedulability; the lower values of flow-span imply that the net-

work has resources to schedule more requests and vice-versa. In Fig. 6.9,

the y-axis is the total number of experiments (%-age) with the maximum

flow-span time less than or equal to the corresponding x-axis value. It can

be observed that the flow-span time for ILP is only slightly better (<5%)

than GRD. As mentioned, this comes at the cost of an extremely long solve

time of ILP.

6.6.2.2 GRD criteria

Next, we evaluate the performance of the GRD heuristic in detail. To this

end, we consider the mixed network in MESH topology of size 10x10 with all

alternate nodes of MESH connected with a WAP. The total number of TT

flow requests (|R|) is 250.

We evaluate the impact of four request sorting criteria (crit)– RAND, ENDPOINT -

BW, BW and PERIOD FSIZE on the GRD performance. The criteria are sum-

End-to-end Scheduling for Wired-wireless Mixed Networks 193

ILP_RING GRD_RING ILP_MESH GRD_MESH
Topology

10 2

10 1

100

101

102

103

so
lve

 tim
e (

s)

Figure 6.7: Box plot of the solve time (in log scale) for ILP and GRD on two
topologies.

0 2000 4000 6000 8000
time (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

O
bj

ec
tiv

e
va

lu
e

Obj
Int
L-bnd

Figure 6.8: Plot showing the evolution of (i) the current objective value (Obj),
(ii) the best integer solution value (int) and (iii) integer lower bound (L-bnd)

with time for |R| = 30 on MESH of size 9.

marized in Tab. 6.4. Fig. 6.10 shows that the PERIOD FSIZE criterion has

the best performance while ENDPOINT BW has the worst performance after

RAND among all criteria. Scheduling the requests with smaller periods (Tr)

is challenging as the frame injection times (l. 20, Alg. 6.1) for such re-

quests are more constrained than the requests with larger Tr. Among the

requests that have the same Tr, the requests with larger fsizer are selected

first to be scheduled. In ENDPOINT BW, requests are sorted on the basis of

the transmission speed of their endpoints; the requests having wireless end-

points (lower speeds) are selected first for scheduling.

194 Chapter 6

2.31 4.62 6.93 9.24 11.55
max. flow-span (%)

40

60

80

100
%

 o
f e

xp
s

(a)

ILP
GRD

1.74 3.48 5.21 6.95 8.68 10.42 12.15 13.89
max. flow-span (%)

40

60

80

100

%
 o

f e
xp

s

(b)

ILP
GRD

Figure 6.9: The percentage of experiments versus the maximum flow-span time
for (a) RING and (b) MESH topologies.

Table 6.4: Overview of various greedy criterion.

Criterion Description
RAND Random ordering of requests.
ENDPOINT BW Ordering of requests in the ascending order

of endpoint bandwidth.
BW Ordering of requests in the descending

order of requests normalized bandwidth
(fsizer/Tr).

PERIOD FSIZE Ordering of requests in the ascending order
of request period; the ties are broken based
on the request frame-size (fsizer).

End-to-end Scheduling for Wired-wireless Mixed Networks 195

26.06 33.3 40.53 47.76 54.99 62.23 69.46 76.69
max. flow-span (%)

0

20

40

60

80

100

%
 o

f e
xp

s

RAND
PERIOD_FSIZE
BW
ENDPOINT_SPD

.

Figure 6.10: The percentage of experiments versus the maximum flow-span time
for various greedy criteria on MESH with size 10x10 and |R| = 250

6.6.2.3 Wireless Requests Scheduling

For wired-wireless mixed networks, it is essential to evaluate the scheduling

algorithm’s performance for wireless TT flow requests. For a given number

of total requests (|R|), we vary the fraction of requests that have wireless

endpoints and observe the impact on the time allocation for TT flow re-

quests, the maximum flow-span time and the average GCL length. The

mixed network considered for evaluation is the same as the one considered

in Section 6.6.2.2.

The impact of %-age of wireless TT flow requests (¯|R|wl) on the average

time-allocation per-link for TT flow requests is shown in Fig. 6.11 for

|R| = 250. The height of the blue bar indicates the average time spent

in the transmission of TT flow requests and the average guard time for

these flows is indicated by the height of the orange bars. The sum of these

heights indicates the time allocated by GRD to TT flow requests. The rest

of the time in a cycle (height of green bars) is the time in which BE flows

can be transmitted. Clearly, as ¯|R|wl, the average time allocated for TT

flow requests increases and the BE flow time is reduced. This is because of

the longer wireless transmission delays as compared to the wired transmis-

sion delays. Therefore, for a given value of |R|, a higher number of ¯|R|wl

results in more packets traversing wireless links thus increasing the average

TT allocation time. Furthermore, the %-age of guard time (inefficiency in

allocation) increases slightly with ¯|R|wl.

Fig. 6.12 depicts the impact of (¯|R|wl) on the maximum flow-span time for

|R| = 250. The increase in the %-age of wireless requests is accompanied by

an increase in the maximum flow-span time. This stems from the fact the

196 Chapter 6

large value of ¯|R|wl results in longer allocation time for TT flow requests

thus increasing the maximum flow-span time (cfr. Fig. 6.11). Further,

around ¯|R|wl = 80%, the maximum flow-span reaches 90% thus indicating

high contention for the network bandwidth, especially in wireless links.

The shared memory available on a switch is a precious resource and for some

chip architectures, it limits the total number of GCL entries per switch (or

port) [25]. The average number of GCL entries (GCLlen) resulting from

the schedule generated GRD is plotted in Fig. 6.13. Although, the number of

requests (|R|) remains constant, by varying ¯|R|wl, GCLlen increases. This

is because the number of requests whose schedule cannot be aligned with

the already scheduled requests increases with ¯|R|wl. This observation also

corresponds to the increase in guard time with ¯|R|wl (Fig. 6.11).

0.0 20.0 40.0 60.0 80.0
|R|wl (%)

0
20
40
60
80

100

TS
 a

llo
c.

 ti
m

e
(%

)

TS alloc
TS grd
BE time

Figure 6.11: The percentage of time allocation for TT flow requests (blue), guard
time (orange) and BE traffic (green) versus the fraction of wireless requests.

6.7 Conclusion

Supporting time-sensitive networking in hybrid wired-wireless networking

is becoming more and more crucial because of growing applications such as

smart factories and Industry 4.0. In this paper, we presented the problem

of scheduling in wired-wireless mixed networks. The problem is first de-

fined and then two approaches were discussed to solve it. ILP results in an

optimal solution but does not scale beyond a small-sized problem instance,

whereas GRD provides a reasonably good solution and is scalable to larger

problem instances.

In our future work, we would like to address the online scheduling problem

in TSN, where TT flow requests arrive in an online fashion and are sched-

uled one by one with the possibility of re-scheduling the already deployed

End-to-end Scheduling for Wired-wireless Mixed Networks 197

0.0 20.0 40.0 60.0 80.0
|R|wl (%)

0
20
40
60
80

100

m
ax

. f
lo

w
-s

pa
n

tim
e

(%
)

Figure 6.12: The maximum flow-span time (%-age of cycle time) versus the
fraction of wireless requests.

0.0 20.0 40.0 60.0 80.0
|R|wl (%)

0

10

20

30

40

G
C
L l
en

Figure 6.13: The average number of GCL entries (per-node) versus the fraction
of wireless requests.

198 Chapter 6

requests. In addition, the scheduling problem in a softTSN network, where

the processing delays are not fixed but are bounded within a range, shall

be addressed.

6.8 Acknowledgements

This research was funded by the Flemish FWO SBO S003921N VERI-

END.com (Verifiable and elastic end-to-end communication infrastructures

for private professional environments) project, by the FWO project under

grant agreement #G055619N and the Flemish Government under the ”On-

derzoeksprogramma Artificiele Intelligentie (AI) Vlaanderen”.

End-to-end Scheduling for Wired-wireless Mixed Networks 199

References

[1] I. S. Association et al. IEEE Standard for Local and Metropolitan

Area Networks—Timing and Synchronization for Time-Sensitive Ap-

plications in Bridged Local Area Networks. IEEE Std, 802.

[2] IEEE Standard for Local and metropolitan area networks – Bridges

and Bridged Networks - Amendment 25: Enhancements for Scheduled

Traffic. IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-

2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-

2015, and IEEE Std 802.1Q-2014/Cor 1-2015), pages 1–57, 2016.

doi:10.1109/IEEESTD.2016.8613095.

[3] L. Zhang and S. Zeadally. Enabling end-to-end QoS over hybrid wired-

wireless networks. Wireless Personal Communications, 38(2):167–185,

2006.

[4] J. Haxhibeqiri, X. Jiao, E. Municio, J. M. Marquez-Barja, I. Moer-

man, and J. Hoebeke. Bringing Time-Sensitive Networking to Wireless

Professional Private Networks. Wireless Personal Communications,

121(2):1255–1271, 2021.

[5] X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman. openwifi: a

free and open-source IEEE802. 11 SDR implementation on SoC. In

2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring),

pages 1–2. IEEE, 2020.

[6] F. Dürr and N. G. Nayak. No-wait packet scheduling for IEEE time-

sensitive networks (TSN). In Proceedings of the 24th International

Conference on Real-Time Networks and Systems, pages 203–212, 2016.

[7] S. S. Craciunas, R. S. Oliver, and W. Steiner. Formal scheduling con-

straints for time-sensitive networks. arXiv preprint arXiv:1712.02246,

2017.

[8] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and

G. Mühl. ILP-based joint routing and scheduling for time-triggered

networks. In Proceedings of the 25th International Conference on Real-

Time Networks and Systems, pages 8–17, 2017.

[9] D. Tămaş-Selicean, P. Pop, and W. Steiner. Design optimization of

TTEthernet-based distributed real-time systems. Real-Time Systems,

51(1):1–35, 2015.

200 Chapter 6

[10] D. Tamas-Selicean, P. Pop, and W. Steiner. Synthesis of communi-

cation schedules for TTEthernet-based mixed-criticality systems. In

Proceedings of the eighth IEEE/ACM/IFIP international conference

on Hardware/software codesign and system synthesis, pages 473–482,

2012.

[11] IEEE Draft Standard for Local and Metropolitan Area Networks -

Timing and Synchronization for Time-Sensitive Applications. IEEE

P802.1AS-Rev/D6.0 December 2017, pages 1–496, 2018.

[12] IEEE Standard for Local and metropolitan area networks– Virtual

Bridged Local Area Networks Amendment 12: Forwarding and Queu-

ing Enhancements for Time-Sensitive Streams. IEEE Std 802.1Qav-

2009 (Amendment to IEEE Std 802.1Q-2005), pages 1–72, 2010.

doi:10.1109/IEEESTD.2010.8684664.

[13] IEEE Standard for Local and metropolitan area networks— Bridges and

Bridged Networks - Amendment 24: Path Control and Reservation.

IEEE Std 802.1Qca-2015 (Amendment to IEEE Std 802.1Q-2014 as

amended by IEEE Std 802.1Qcd-2015 and IEEE Std 802.1Q-2014/Cor

1-2015), pages 1–120, 2016. doi:10.1109/IEEESTD.2016.7434544.

[14] IEEE Standard for Local and metropolitan area networks–Bridges and

Bridged Networks–Amendment 28: Per-Stream Filtering and Polic-

ing. IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014

as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015,

IEEE Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE

Std 802.1Qbu-2016, and IEEE Std 802.1Qbz-2016), pages 1–65, 2017.

doi:10.1109/IEEESTD.2017.8064221.

[15] IEEE Standard for Local and metropolitan area networks–Frame Repli-

cation and Elimination for Reliability. IEEE Std 802.1CB-2017, pages

1–102, 2017. doi:10.1109/IEEESTD.2017.8091139.

[16] Z. Hanzálek, P. Burget, and P. Šucha. Profinet IO IRT message

scheduling. In 2009 21st Euromicro Conference on Real-Time Systems,

pages 57–65. IEEE, 2009.

[17] D. Hellmanns, L. Haug, M. Hildebrand, F. Dürr, S. Kehrer, and

R. Hummen. How to Optimize Joint Routing and Scheduling Mod-

els for TSN Using Integer Linear Programming. In Proc. ACM Int.

Conf. Real Time Netw. Syst., Nantes, France, 2021.

[18] M. Pahlevan and R. Obermaisser. Genetic algorithm for scheduling

time-triggered traffic in time-sensitive networks. In 2018 IEEE 23rd

End-to-end Scheduling for Wired-wireless Mixed Networks 201

international conference on emerging technologies and factory automa-

tion (ETFA), volume 1, pages 337–344. IEEE, 2018.

[19] Y. Wang, J. Chen, W. Ning, H. Yu, S. Lin, Z. Wang, G. Pang,

and C. Chen. A time-sensitive network scheduling algorithm based on

improved ant colony optimization. Alexandria Engineering Journal,

60(1):107–114, 2021.

[20] D. Cavalcanti, J. Perez-Ramirez, M. M. Rashid, J. Fang, M. Galeev,

and K. B. Stanton. Extending Accurate Time Distribution and Timeli-

ness Capabilities Over the Air to Enable Future Wireless Industrial Au-

tomation Systems. Proceedings of the IEEE, 107(6):1132–1152, 2019.

doi:10.1109/JPROC.2019.2903414.

[21] T. Adame, M. Carrascosa-Zamacois, and B. Bellalta. Time-sensitive

networking in IEEE 802.11 be: On the way to low-latency WiFi 7.

Sensors, 21(15):4954, 2021.

[22] D. Ginthör, R. Guillaume, J. von Hoyningen-Huene, M. Schüngel, and

H. D. Schotten. End-to-end Optimized Joint Scheduling of Converged

Wireless and Wired Time-Sensitive Networks. In 2020 25th IEEE Inter-

national Conference on Emerging Technologies and Factory Automa-

tion (ETFA), volume 1, pages 222–229. IEEE, 2020.

[23] IBM. IBM ILOG CPLEX Optimization Studio. Available from: https:

//www.ibm.com/analytics/cplex-optimizer.

[24] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring Network

Structure, Dynamics, and Function using NetworkX. In G. Varoquaux,

T. Vaught, and J. Millman, editors, Proceedings of the 7th Python in

Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[25] D. Hellmanns, A. Glavackij, J. Falk, R. Hummen, S. Kehrer, and

F. Dürr. Scaling TSN scheduling for factory automation networks. In

2020 16th IEEE International Conference on Factory Communication

Systems (WFCS), pages 1–8. IEEE, 2020.

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer

7
Conclusion

The remarkable growth in the traffic flowing through communication net-

works along with the reducing ARPU has forced telecom operators to trans-

form the way network services are created and managed. Traditional ar-

chitectures that relied heavily on specialized hardware are evolving towards

architectures where virtual services are hosted over inexpensive COTS hard-

ware. The broadcast industry is also witnessing a similar evolution. On the

one hand, the transport of uncompressed media that is traditionally done

via SDI routers is now done through IP networking. On the other hand,

media processing functionality that is usually implemented via expensive

hardware is now being virtualized and run over COTS hardware.

The first part of the dissertation dealt with optimization algorithms con-

cerning the deployment of virtual network and media services. Telecom

operators and broadcasters foresee significant cost reduction by adopting

COTS-based architectures. Efficient resource utilization is key to cost re-

duction, thus optimization algorithms for virtual service deployment were

proposed in this dissertation.

The algorithms proposed in the first part do not make any end-to-end la-

tency or jitter guarantees. In order to let real-time traffic coexist with the

standard best-effort traffic, a type of packet scheduling is needed. In the

second part of this dissertation, the problem of end-to-end packet scheduling

for time-sensitive applications is investigated and algorithms were proposed

to solve the scheduling problem.

204 Chapter 7

In the following sections of this chapter, we conclude with the key research

contributions in this dissertation and discuss potential future research di-

rections.

7.1 Virtualized Service Deployment Algorithms

7.1.1 Research Contributions

Two key challenges before the adoption of COTS hardware-based architec-

tures are their inferior performance and higher power consumption in con-

trast to the architectures based on middleboxes [1]. Several performance

and power optimization solutions have been proposed by researchers [2].

One such solution is to use externally connected hardware accelerators

(e.g., GPUs, FPGAs) to offload compute-intensive VNF operations from

the CPUs running the VNF. Due to the reduction in CPU usage, additional

VNFs can be hosted on the same NFVi but enhanced with hardware accel-

erators. For instance, offloading of AES and SHA operations from an SSH

client VNF to an FPGA accelerator results in a throughput improvement

of 62%, as demonstrated in Appendix A.

As hardware accelerators are expected to be increasingly incorporated in

the NFVi layer, it is required that the resource allocation processes in the

MANO layer take into account their presence [3]. Otherwise, the ineffi-

cient allocation would not result in cost reductions as envisaged by telecom

operators when adopting NFV. The VNF-PC procedures existing in the lit-

erature are mostly agnostic to both the acceleration requirements of VNFs

and the locality of hardware accelerators in the NFVi layer [1]. As a result,

the chosen VNF-PC algorithm can result in inefficient utilization of NFVi

resources. Therefore, the VNF-PC algorithm needs to be altered to make it

to take into account hardware accelerators. To this end, we addressed the

problem of VNF-AAPC in Chapter 2. First, we presented an ILP formu-

lation of the problem. The ILP formulation is a single-step approach that

jointly optimizes VNF placement, chaining and accelerator allocation re-

sulting in an optimal deployment. Next, we developed an accelerator-aware

heuristic also to solve the VNF-AAPC problem. The heuristic performs

VNF-PC in two phases– first, accelerate-able VNFs are deployed on the

nodes containing accelerators and then, the rest of VNF-chain segments are

deployed in a hierarchical manner. In simulation experiments, the trade-off

between the ILP approach and the heuristic is observed. First, the two

approaches were compared in terms of their execution times. The ILP ap-

proach is more than three orders of magnitude slower than the heuristic

thus infeasible for realistic network topology. Although the heuristic results

Conclusion 205

in a suboptimal solution, the gap between the two approaches is less than

5% in terms of total nodes cost. In spite of its slightly better performance,

the ILP approach is impractical for reasonably sized problem instances. In

order to access the efficiency of the accelerator-aware VNF-PC heuristic, its

performance was compared with the accelerator-agnostic VNF-PC heuris-

tic. The results clearly demonstrated that the accelerator-aware heuristic

results in a nearly 10-15% reduction in the total nodes cost compared to the

accelerator-agnostic heuristic. This node cost reduction can be attributed to

the improved VNF consolidation as a result of the accelerator-aware VNF-

PC. Overall cost analysis shows that in order to achieve significant cost

savings, efficient accelerator-aware VNF-PC algorithms are required even

though accelerator costs are expected to fall in the future.

The VNF-AAPC procedures presented in Chapter 2 are static, i.e., once

an accelerator is allocated to a VNF it is not reallocated to another VNF

despite the change in the traffic flowing through the VNF. In Appendix A,

a procedure for dynamic allocation of hardware accelerators to VNFs is pre-

sented. We have implemented an SSM, as a component of MANO, which

feeds on the resource utilization information of VNFs and determines which

VNF to allocate available accelerator resources. The VNFs in this case are

SSH clients whose cipher (AES) and hash (SHA) operations were acceler-

ated using FPGA-based accelerators. An improvement of 42.1% and 61.9%

in throughput for AES128 and AES256, respectively, was noticed because

of the hardware acceleration of SSH-client VNFs. In addition, dynamic pro-

visioning of hardware accelerator cores to VNFs is achieved based on their

real-time CPU usage.

A failure in the NFVi can result in the disruption of multiple network ser-

vices implemented via VNF-chains. After detecting such an event, VNF-

chains are recovered by re-allocating NFVi resources. This implies that

not only VNFs are re-assigned to appropriate server nodes but accelera-

tor resources are also allocated. We addressed the prioritized VNF-chain

recovery problem in NFV environments containing hardware accelerators

in Appendix B. The problem was modeled first as an ILP whose objective

function was to maximize the total traffic restored after a failure, subject

to new resource constraints. The restoration is accompanied by the pref-

erence for high-priority VNF-chains. Due to the impracticality of the ILP

approach for solving the problem for large instances, a greedy-heuristic was

also proposed to solve the problem for a sub-optimal solution. However, the

performance of the greedy heuristic was found to be on par with the ILP

approach as far as the restoration of high and medium priority VNF-chains

is concerned, whereas a slight gap is observed for low-priority VNF-chains.

In addition, it was observed that accelerator-aware restoration results in

206 Chapter 7

about 30% more traffic restored than accelerator-agnostic restoration.

Traditionally, media transport and processing in broadcast studios is achieved

using specialized hardware appliances [4]. Due to the high costs of hardware

media appliances, akin to middleboxes, upgrading the studio infrastructure

for newer and high-quality formats requires substantial investments. To re-

duce total CAPEX and OPEX, the broadcast industry is transitioning to-

wards architectures based on COTS hardware. The transition is two folds–

(i) in the media transport domain from SDI to IP and (ii) in the media

processing domain from specialized hardware to VMFs. Taking inspiration

from NFV, we proposed the idea of MFV in Chapter 3. MFV is an architec-

ture where media transport and processing are based on COTS hardware.

Apart from cost reduction and other advantages, MFV, offers opportuni-

ties that were not available with the traditional studio architecture. For

instance, a high-bandwidth video stream can be split into multiple inde-

pendently switched low-bandwidth video streams. Stream decomposition

together with virtualization can be exploited to decompose a given virtual-

ized media service. In Chapter 3, we proposed a procedure to obtain the

decomposition of the given virtual media service’s VMF-FG. Such an algo-

rithm is used to transform the VMF-FG to an optimized VMF-FG, which

when deployed can potentially result in better resource utilization. For

VMF-FG deployment, two VMF-PC algorithms were also proposed. NFPC

is the first VMF-PC algorithm that is based on the next-fit approach; (de-

composed or not) VMF-FG is traversed starting from the sink node while

each considered VMF is deployed on the next available server node and

chained with its upstream VMF nodes. k-cutPC is an alternative VMF-

PC that results in the reduction of total bandwidth usage over the NFPC

approach. The given VMF-FG is first partitioned into k components and

then each component is deployed using NFPC. The partitioning is done

such that the total virtual link bandwidth between partitioned components

is minimum. The simulation results revealed an improvement in resource

utilization as a result of VMF-FG decomposition. In particular, the total

server nodes reservation and CPU utilization improvement were shown as

a result of VMF decomposition by 20% and 10%, respectively. Further-

more, VMF-FG decomposition resulted in a slight reduction in network

bandwidth usage. As k-cutPC attempts the deployment of a partitioned

VMF-FG, which has minimum inter VMF-FG component bandwidth, it

has better bandwidth utilization than NFPC. Finally, the latency in terms

of end-to-end hops of a deployed VMF-FG is also reduced with VMF-FG

decomposition.

Conclusion 207

7.1.2 Future Directions

As mentioned before, producing broadcast-quality content demands that ab-

solute QoS parameters, i.e., zero packet loss, bounded latency and jitter, are

respected with regards to both media transport and processing. The chal-

lenge of deterministic transport of media streams in IP can be addressed by

employing, e.g., CSQF-based scheduling, in the network nodes. However,

the other challenge, i.e., the processing of multi gigabits per second media

streams via VMFs in real-time still needs to be tackled. Real-time process-

ing in VMF is challenging because of the unpredictable delays inside the

Linux networking stack. Various kernel-bypass mechanisms such as DPDK,

netmap, etc, have been proposed to enhance the ability of VMFs to handle

data rates of more than tens of Gbps [5], [6]. By using these mechanisms,

packets can be transferred directly to userspace applications from the NIC

with minimum involvement of the kernel. Although these optimizations

have been proven to be useful for VNF implementation, they still need to

be benchmarked for their broadcast-specific performance (e.g., packet loss,

latency, jitter). In addition to software optimizations focused on the net-

working part, actual processing at the frame-level (e.g., color correction,

picture-in-picture) can be offloaded to an attached hardware accelerator.

As GPUs have often been employed in video processing applications, their

role for VMF acceleration needs to be investigated. Particularly, GPU vir-

tualization will be important in such scenarios where VMFs based on VMs

or Docker containers might want to share the attached GPU [7].

Architectures based on MFV are also expected to provide the same, if not

more, reliability as was ensured by SDI. Especially, in live events as op-

posed to recorded events, it is paramount that the production quality is not

impacted by one or more failures in the infrastructure. This entails suffi-

cient redundancy for media transport (in the network) as well as for media

processing (in VMFs). Fully redundant media transport can be achieved

by exploiting seamless switching based on 1 + 1 protection as described in

the SMPTE 2022-7 standard [8]. Similarly, resilience for media processing

can be ensured by replicating VMFs across multiple server nodes. Future

research can therefore focus on VMF placement and scheduling algorithms

that can ensure a given level of availability.

Traditionally, on-premise studio resources are reserved according to the peak

utilization, not the average utilization. This requires huge investment in ac-

quiring, deploying and managing expensive hardware. Recently, broadcast-

ers have shown interest in outsourcing some types of production workflows

to the cloud. For instance, Amazon Web Services (AWS) Elemental already

offers transcoding functions for live video [9]. It is reasonable to expect that

such cloud services will offer a wide range of media processing functional-

208 Chapter 7

ities in the coming years. Adhering to SMPTE 2110-21 constraints when

transporting media streams between the on-premise facility and the cloud

shall be challenging. Moreover, requirements specific for broadcasting such

as IGMP multicast, PTP synchronization, 2022-7 resilience, etc, are not

currently provided by typical cloud scenarios [10], [11]. These challenges

must be addressed to ensure the on-premise plus cloud hybrid model can

be adopted.

Finally, ensuring QoS in such a complex system, which has multiple hard-

ware and software components interacting with each other, will be chal-

lenging. Mathematical frameworks like network calculus can be exploited

to model such systems so that their QoS can be argued analytically [12].

7.2 Packet Scheduling Algorithms

7.2.1 Research Contributions

The two VMF-PC algorithms proposed in Chapter 3 assume best-effort net-

working for media transport on a virtual link between two deployed VMFs.

This implies broadcast-level QoS KPIs such as packet loss, delay, jitter,

etc, cannot be guaranteed with such algorithms. Therefore, there is a need

to have packet scheduling for each virtual link in the given VMF-FG so

that broadcast-quality guarantees can be made for the deployed virtual

media services. A mechanism such as CSQF can be exploited to sched-

ule packet transmissions along the network path between any two adjacent

VMFs so that end-to-end guarantees can be made for the complete VMF-

FG. In Chapter 4, the VMF-FG scheduling problem was first formulated

and proved for its NP-completeness. Next, a greedy heuristic, based on the

BFS and DFS graph traversal algorithms, was proposed, whose objective

was to find packet schedules for a given VMF-FG in a time-efficient man-

ner. The evaluation of the heuristic shows an increase in the end-to-end

delay with increasing cycle time. We also highlighted the improvement in

the end-to-end delay with VMF-FG decomposition, particularly for high-

quality formats.

Packet scheduling mechanisms such as CSQF ensure that end-to-end la-

tency is bounded by making the queuing process deterministic in each net-

work node along the path from the flow’s source to destination. In addition,

packet scheduling also ensures that queue occupancy does not increase indef-

initely with time, thus preventing packet losses due to congestion. However,

flows can still be affected due to the failures in the network (e.g., switch fail-

ure due to memory error or link failure due to a fiber break) but can be

Conclusion 209

prevented by employing dedicated path protection schemes such as 1 + 1

protection. In Chapter 5, we investigated the problem of 1 + 1 RTSCH

for DetNets flows. The problem takes into account the end-to-end delays

along the selected paths to ensure reliable recovery at the destination. The

problem is addressed using three approaches– (i) ILP, (ii) Greedy and (iii)

Tabu-search. The simulation results revealed the trade-offs between the

average traffic accepted versus the solve time for these approaches. Al-

though the ILP approach had the highest average accepted traffic, it was

found to be not scalable beyond small networks. On the other hand, the

greedy approach was the fastest approach but had the lowest average traffic

accepted. The Tabu-search approach provided a compromise between the

ILP and Greedy approach; problem instances can be solved in a few seconds

which the ILP approach would require several hours to solve but only at a

small cost (< 10%) of average traffic accepted. The results also indicated

that increasing the cycle time (Tc) decreases the end-to-end delay but re-

duces the average traffic accepted.

The wired-only networks considered in Chapter 4 and 5 could easily promise

end-to-end timing guarantees by employing TSN/DetNet mechanisms. How-

ever, due to the increasing demand to support applications such as smart

factories and Industry 4.0, it is essential that end-to-end guarantees can also

be made in wired-wireless mixed networks [13]. The problem of end-to-end

scheduling in wired-wireless mixed networks was investigated in Chapter 6.

The problem was modeled as an ILP and a greedy heuristic was proposed to

solve the reasonably sized instances of the problem. The simulation results

showed that the greedy approach was more than three orders of magnitude

faster than the ILP approach, whereas its performance in terms of flow-span

time was only 5% inferior as compared to ILP. The impact of request sorting

criteria on greedy performance was also highlighted. Finally, the impact of

wireless requests on the time allocation for TT flow requests, the maximum

flow-span time and the average GCL length were reported.

7.2.2 Future Directions

TSN has enabled Ethernet-based networks to support both time-sensitive

applications that are associated with hard timing deadlines as well as stan-

dard best-effort applications that have no such constraints. Normally, these

mechanisms are implemented in hardware TSN switches because of deter-

ministic latency requirements. In recent years, attempts have been made to

make software networking (e.g. Linux’s) stacks more predictable. Linux’s

queuing (qdisc) discipline called Time-aware Priority Shaper (TAPRIO) is

one such attempt to implement Time Division multiplexing in Linux [14].

210 Chapter 7

These TSN mechanisms might be useful not only for software TSN emula-

tors but also important in real-life applications. For example, when moving

the physical Programmable Logic Controller (PLCs) to the cloud, TSN-

enabled switching will be required in the Linux networking stack to connect

actuators and sensors in the factory to the vPLC in the cloud [15].

A preliminary investigation conducted on the Linux bridge has revealed

that its processing delay is sensitive to various system configurations like

CPU power setting, TLB efficiency, etc. Thus, a proper benchmarking of

the Linux networking stack is required to come up with an optimal config-

uration suited for real-time applications. In addition, the packet scheduling

algorithms (e.g., in Chapter 4-6) also need to be adapted so that the un-

predictable processing delay in a software networking stack does not result

in the violation of a TT flow’s QoS. Particularly, taking into account the

variation in processing delay, appropriate guard times need to be inserted

in the GCL. The proposed algorithms should be accompanied by the worst-

case analysis for end-to-end latency and jitter values.

A change in an assembly line or migration of vPLC from one server node to

another in the cloud requires re-configuring or re-scheduling TT flows. The

scheduling problem considered in this dissertation works in an offline fash-

ion, i.e., the set of all requested TT flows and the corresponding parameters

are known beforehand. Thus, offline scheduling is not a good suit for such

scenarios and these requests should be handled one by one. This leads to

the problem of online scheduling of TT flow requests. Moreover, the already

scheduled TT flow requests might require re-scheduling periodically so that

the network is able to accept as many requests as possible. However, it

needs to be guaranteed that while the TT flow is being re-scheduled, its

QoS requirements are not violated, i.e., there is no excessive packet delay

and no packet loss during re-scheduling. This requirement can be met by

ensuring that packets are still scheduled on both the old and the new path

while doing re-scheduling. Similar to 1 + 1 protection, dynamic activation

(deactivation) of duplication and elimination functions at source and des-

tination nodes, respectively, shall be required [16]. To summarize, reliable

re-scheduling entails a dynamic network along with an efficient scheduling

algorithm. Further study focusing on the problem of dynamic scheduling of

online TT flow requests is required.

The scheduling problem addressed in Chapter 6 assumed that the wireless

data rate is much lower than the maximum possible data rate. This as-

sumption ensures that the packet loss probability is reduced thus ensuring

the higher reliability of wireless links. However, the scheduled packet trans-

missions on a wireless link can still collide with the transmission from an

external wireless source. As a consequence, a successful end-to-end deliv-

Conclusion 211

ery might require one or more transmissions in wireless links as opposed to

wired links where a single transmission is enough. This necessitates that

the scheduling algorithm allocates time slots for these re-transmissions. Fu-

ture research can focus on building scheduling algorithms that ensure that

a TT flow request’s reliability requirement is met by allocating the required

number of re-transmission time slots on wireless links.

212 Chapter 7

References

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,

and R. Boutaba. Network function virtualization: State-of-the-art

and research challenges. IEEE Communications surveys & tutorials,

18(1):236–262, 2015.

[2] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zin-

ner, R. Bifulco, M. Jarschel, and G. Bianchi. Survey of performance

acceleration techniques for network function virtualization. Proceedings

of the IEEE, 107(4):746–764, 2019.

[3] Z. Bronstein, E. Roch, J. Xia, and A. Molkho. Uniform handling and

abstraction of NFV hardware accelerators. IEEE Network, 29(3):22–29,

2015.

[4] S. Sneddon, C. Swisher, and J. Mayzurk. Large Scale Deployment of

SMPTE 2110: The IP Live Production Facility. In SMPTE 2019, pages

1–31. SMPTE, 2019.

[5] The Linux Foundation. Data Plane Development Kit (DPDK). Avail-

able from: https://www.dpdk.org/.

[6] L. Rizzo. netmap: a novel framework for fast packet I/O. In 21st

USENIX Security Symposium (USENIX Security 12), pages 101–112,

2012.

[7] NVIDIA. RDG: OpenStack SMPTE 2110 Media Streaming

Cloud with NVIDIA Network Hardware Offload, 2019. Available

from: https://docs.nvidia.com/networking/pages/releaseview.action?

pageId=18484492.

[8] ST 2022-8:2019 - SMPTE Standard - Professional Media Over Man-

aged IP Networks: Timing of ST 2022-6 Streams in ST 2110-10 Sys-

tems. ST 2022-8:2019, pages 1–10, 2019. doi:10.5594/SMPTE.ST2022-

8.2019.

[9] AWS. Overview of Amazon Web Services, 2019. Available from:

https://docs.aws.amazon.com/whitepapers/latest/aws-overview/

aws-overview.pdf#media-services.

[10] IEEE Standard for Local and Metropolitan Area Networks - Tim-

ing and Synchronization for Time-Sensitive Applications in Bridged

Local Area Networks. IEEE Std 802.1AS-2011, pages 1–292, 2011.

doi:10.1109/IEEESTD.2011.5741898.

https://www.dpdk.org/
https://docs.nvidia.com/networking/pages/releaseview.action?pageId=18484492
https://docs.nvidia.com/networking/pages/releaseview.action?pageId=18484492
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/aws-overview.pdf#media-services
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/aws-overview.pdf#media-services

Conclusion 213

[11] S. Standard. Professional Media Over Managed IP Networks: Traffic

Shaping and Delivery Timing for Video. SMPTE Standard ST, pages

2110–21, 2017.

[12] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of deter-

ministic queuing systems for the internet. Springer, 2001.

[13] J. Haxhibeqiri, X. Jiao, E. Municio, J. M. Marquez-Barja, I. Moer-

man, and J. Hoebeke. Bringing Time-Sensitive Networking to Wireless

Professional Private Networks. Wireless Personal Communications,

121(2):1255–1271, 2021.

[14] Linux. tc-taprio(8) — Linux manual page, 2018. Available from: https:

//man7.org/linux/man-pages/man8/tc-taprio.8.html.

[15] M. Azarmipour, H. Elfaham, C. Gries, and U. Epple. Plc 4.0: A control

system for industry 4.0. In IECON 2019-45th Annual Conference of

the IEEE Industrial Electronics Society, volume 1, pages 5513–5518.

IEEE, 2019.

[16] IEEE Standard for Local and metropolitan area networks–Frame Repli-

cation and Elimination for Reliability. IEEE Std 802.1CB-2017, pages

1–102, 2017. doi:10.1109/IEEESTD.2017.8091139.

https://man7.org/linux/man-pages/man8/tc-taprio.8.html
https://man7.org/linux/man-pages/man8/tc-taprio.8.html

A
Dynamic hardware-acceleration of

VNFs in NFV environments

Chapter 2 discusses the VNF-AAPC problem whose solution gives a fixed

mapping of accelerators to VNFs. For dynamic NFV environments where

traffic flows through VNFs varies with time, a static allocation of acceler-

ators to VNFs results in inefficient resource utilization. However, by allo-

cating accelerators on the basis of instantaneous VNF requirements better

resource utilization can be achieved.

In this appendix, we propose and experimentally evaluate a solution that

dynamically shares hardware accelerators between multiple VNFs based on

real-time CPU usage. The proposed solution supplements the contributions

made in Chapter 2.

⋆ ⋆ ⋆

G.P. Sharma, W. Tavernier, D. Colle, and M. Pickavet

Published in the Proceedings of the International Conference on

Software Defined Systems (SDS), Rome, Italy, 2019, pp. 254–259

Abstract In this paper, we describe a scheme for dynamically provision-

ing hardware accelerator resources to virtual network functions (VNF) in

216 Appendix A

an NFV environment. The scheme involves collaboration between various

NFV components like the Service-specific Manager (SSM) and Element-

management Systems (EMSs) for the management of accelerator resources.

Accelerator resources are dynamically allocated to VNFs based on their

resource usage information. We present the performance comparison of

non-accelerated and accelerated SSH client VNFs. We also demonstrate

switching of accelerator resources between the concurrently running SSH

tunnels which is triggered by a change in the nature of the data traffic

flowing through SSH tunnels.

A.1 Introduction

Network services are conventionally deployed using specialized and propri-

etary hardware appliances called middleboxes. The objective of Network

function virtualization (NFV) is to decouple the packet-processing function-

ality of these middleboxes from the underlying hardware so that standard

IT virtualization technologies can be utilized to execute network functions

on general-purpose x86 or ARM servers. NFV has enabled the faster de-

ployment of new network services along with a reduction in capital and

operational expenditures. Despite all the benefits that NFV offers, it still

faces obstacles towards its widespread acceptance by telecom operators. The

biggest challenge is to achieve the same virtual network function (VNF)

performance as offered by its hardware counterpart [1]. To overcome this

challenge, the use of hardware accelerators (GPUS, FPGAs, smartNICs) in

conjunction with general-purpose processors has been advocated.

In the process of migration towards virtual packet-processing implemen-

tations from the fixed-hardware implementation, re-configurable compute

platforms like FPGAs acting as hardware accelerators for VNFs are gaining

special attention. FPGAs offer the best of both worlds, i.e., the flexibility

of general-purpose processors and the performance of dedicated hardware

boxes. Therefore, compute-intensive portions of a network function running

on the CPU could be offloaded to the re-configurable accelerators running

on an FPGA. In some COTS servers, a CPU can be integrated with pro-

grammable logic on the same die or it can be attached to an FPGA board

via a PCIe bus.

The flexible and scalable hardware-acceleration of multiple VNFs in an NFV

environment is still a challenge. Moreover, as hardware accelerator resources

are limited as compared to other computing resources, an allocation strategy

is required for their efficient provisioning in NFV environments. Different

components of the NFV reference architecture, proposed by the ETSI, are

depicted in Fig.A.1. The key components which are relevant to our scheme

Dynamic hardware-acceleration of VNFs in NFV environments 217

Figure A.1: ETSI’s reference architecture for NFV.

are highlighted in blue. The VNF manager (VNFM) or Service-specific

Manager (SSM) is responsible for life-cycle management, i.e. starting/stop-

ping, scaling and configuring, of one or more VNFs during the service life-

time. The element management system (EMS) for each VNF and the SSM

coordinate with each other to manage the service-specific parameters of

VNFs during their life-cycle. We have implemented an SSM that feeds on

the resource utilization information of VNFs and determines which VNF

to allocate the available accelerator resources. We have chosen the SSH

tunneling service to demonstrate a scheme for the dynamic provisioning of

hardware accelerators to VNFs. Based on the real-time resource usage, we

show how accelerator resources could be dynamically activated for different

SSH tunnels.

A.2 System Architecture and Implementation

Oftentimes, an employee of an enterprise sitting in a home needs a secure

means to access network services present in a private network of its office or

data center. SSH tunneling is the most straightforward method for creating

a secure channel between a home user and a server present in the private

network. An SSH client running on the user’s machine creates an encrypted

tunnel to the SSH server of the enterprise passing through the internet.

After the creation of the SSH tunnel, the SSH client forwards the packets

which it received at the listening port to a specific mapped port on the

destination host (local port forwarding) via the SSH server of the private

network.

We have implemented and evaluated our scheme for the service based on

SSH client VNFs. However, system components and processes remain the

same for other scenarios with different VNF types. Next, we will discuss

218 Appendix A

Figure A.2: Components and NFV processes involved in the accelerator
allocation scheme.

the mechanism of the scheme which involves SSM and other components of

ETSI’s NFV architecture.

A.2.1 Service Specific Manager and NFV processes

Fig. A.2 illustrates the components and processes required for the deploy-

ment and management of hardware-accelerated VNFs in alignment with the

ETSI’s NFV architecture. Firstly, the NFV orchestrator (NFVO) delegates

the task of reserving resources for VNFs allocation to the virtual infrastruc-

ture manager (VIM). The NFVO also specifies the need for any hardware

accelerator cores, e.g. AES and SHA for SSH client VNFs. A separate

instance (VNF) is instantiated in order to monitor the resource utilization

information, e.g. %CPU, network traffic-rate, of the service VNFs.

During the operational phase, the SSM fetches the resource utilization of

each VNF using the monitoring system and feeds it to the allocation logic.

The allocation logic then selects the most suitable VNF to which the ac-

celerator should be allocated. In our case, SSM’s role is to dynamically

provision accelerator resources to VNFs based on the allocation logic. The

algorithm for VNF selection is discussed in the next subsection.

After determining the next VNF to accelerate, the currently accelerated

VNF is triggered to release the accelerator resource. This is followed by

granting the accelerator to the selected VNF by triggering its EMS as shown

in Fig A.2. The required configuration of a VNF for accelerator de/alloca-

tion can be done using the interface between the EMSs and the SSM.

Dynamic hardware-acceleration of VNFs in NFV environments 219

A.2.2 Accelerator allocation algorithm in SSM

The allocation algorithm consists of an infinite while-loop as shown in Alg.

A.1. At the start of the algorithm (T imer = −1), a set of VNFs having re-

source usage higher than the high-threshold (Thhigh) value is selected from

all running VNFs (Filter((usage > Thhigh), vnfs)). The resource usage

can be %CPU usage of the VNF or the rate of traffic flowing through a

network interface of the VNF. Out of the selected set of VNFs, a VNF with

minimum access (LowestTimer) is chosen for the acceleration. Therefore, a

VNF which has had the least access to accelerator resources in the past is

picked.

After the choice of VNF for the access to the accelerator has been made,

the currently accelerated VNF is requested to release accelerator resources.

Next, the newly selected VNF (vnf) is granted access to the accelerator

along with resetting the T imer variable to zero. Access to accelerator re-

sources is given for a fixed time-period (T). Both the timers– T imer and

vnfacc.timer are incremented with each pass of the while-loop. Upon the

expiry of the allocated time (T imer > T), the process of selection, de-

allocation, and allocation is repeated.

Meanwhile, if the resource usage of the accelerated VNF falls below the

lower threshold value, the accelerator resources are taken from that VNF.

High-threshold (Thhigh) and low-threshold (Thlow) values for the CPU us-

age are 0.75(CPUmax), and 0.65(CPUmax), respectively, where CPUmax

is the maximum CPU utilization of a VNF. The minimum accelerator al-

location time (T) in our setup is 11s. This choice of threshold levels and

allocation time leads to a responsive and stable operation of the accelerator

allocation algorithm.

A.2.3 AES and SHA Acceleration in Dropbear

For the SSH client we have chosen Dropbear1. The original Dropbear im-

plementation utilizes ciphers and hashes functions provided by libtomcrypt

(cryptographic library)2, to perform en/decryption and hashing on data

packets. These functions involve multiple rounds of bit- and byte- level ma-

nipulations, e.g. XOR, substitutions, rotations, of data. A software cipher

or hash function would require a CPU to execute these operations sequen-

tially on the input data. On the other hand, a hardware implementation

could perform these functions much faster owing to the massive parallelism

available on an FPGA or ASIC.

In order to accelerate these cryptographic operations in Dropbear, the

1https://github.com/mkj/dropbear
2https://github.com/libtom/libtomcrypt

220 Appendix A

Algorithm A.1: Pseudo-code for the accelerator allocation algo-
rithm.

1 Global: vnfacc, T imer
2 Input: T , Thlow, Thhigh

3 Procedure SWAP(vnf):
4 if vnfacc ̸= φ then

5 deallocate(vnfacc)

6 if vnf ̸= φ then

7 vnfacc ← vnf
8 allocate(vnfa)

9 T imer ← 0

10 Procedure INCTIMERS():

11 T imer ← T imer + 1
12 if vnfacc == φ then

13 vnfacc.timer ← vnfacc.timer + 1

14 T imer, vnfacc ← −1, φ
15 while True do

16 if T imer > TorT imer == −1 then

17 vnf ← LowestTimer(FILTER(usage > Thhigh), vnfs)
18 SWAP(vnf)

19 else if vnfacc.usage < Thlow then

20 SWAP(φ)

21 else

22 INCTIMERS()

Dynamic hardware-acceleration of VNFs in NFV environments 221

FPGA-based accelerators cores for AES-128/256 and SHA-256 are utilized.

These cores are based on an open-source Verilog implementation 34. The

hardware architecture for accelerating en/decryption and hash using exter-

nal hardware cores is shown in Fig. A.3. For en/decryption, the hardware

core is first initialized by writing keys and initialization vectors into its

memory-mapped registers of the AES core. Similarly, for hash initializa-

tion, the current hash state is written to SHA-256 core’s registers. Initial-

ization is followed by the transfer of input data from the RAM memory to

the BRAM of the accelerator core where cipher-text or hash is calculated.

The AES/SHA core engine fetches input text from the BRAM one block

(BSAES = 4x32-bit words, BSSHA = 16x32-bit words) at a time, processes

it and then writes the processed text back to BRAM. The progress of the

core is monitored continuously by checking the “progress pointer” of the

corresponding core, which indicates the length of the input text which has

been processed.

Figure A.3: Hardware design for AES en/decryption and SHA hash acceleration
on PYNQ.

When the processing of the input text is complete, cipher-text or hash

is transferred back into the main memory (DRAM). All data transfer tasks

between the main-memory and accelerator core’s BRAM are managed by

the direct memory access (DMA) controller (DMAC) present on the ZYNQ

processing system (PS) [2]. A kernel module5 is used to manage DMA trans-

fers from the user-space buffers in Dropbear to the respective cores using

3https://github.com/secworks/aes
4https://github.com/secworks/sha256
5https://github.com/jeremytrimble/ezdma

222 Appendix A

zero-copy mechanisms. This module creates the scatter-gather list of the

memory pages corresponding to the user-space buffer and passes this list to

the pl330 driver which configures the DMA controller. Next, the DMAC

performs the data transfer between the main memory and the BRAM with-

out the involvement of the CPU. The hardware design for the AES-128 and

SHA-256 accelerators was developed and implemented in the Vivado envi-

ronment [3].

In order to let Dropbear offload functions to accelerator cores, several mod-

ifications were added to it. The initialization and the configuration of accel-

erator cores require mapping of core’s address space into Dropbear’s address

space which is done via mmap system call. The transfer of input-text and the

processed-text is done by performing read and write system calls to the

char device exposed by the kernel module mentioned earlier. A signal han-

dler to catch SIGSUR1 is also included in the SSH client. Upon the arrival

of SIGSUR1 from the kernel, Dropbear switches between the two modes, i.e.,

non-accelerated (software only) and hardware-accelerated.

A.2.4 Complete System and Implementation

The complete system was implemented using a laptop and a PYNQ board.

The PYNQ board has a dual-core ARM-A9 processor (PS) and a pro-

grammable fabric (PL) on the same ZYNQ chip6. The PS part of the

ZYNQ chip is used to run Ubuntu-16.04 OS. The PYNQ board is attached

to a laptop running Ubuntu 17.04 via an Ethernet cable. To keep our im-

plementation simple, the orchestrator (python script) is just responsible for

deploying VNFs using docker-tools (docker-client and docker-daemon) and

initiating the SSM. Network functions used for establishing SSH tunnels

are the modified Dropbear’s SSH clients. The complete implementation is

shown in Fig. A.4.

Docker-based VNFs are deployed on the PYNQ board by requesting the

docker-engine running on Ubuntu-16.04 of the PYNQ board. A docker-

client running on the laptop requests the docker-daemon for VNF instan-

tiation. Each VNF for SSH tunneling is a docker container that runs two

applications:

1. Dropbear SSH client (dbclient).

2. REST-ful server acting as an element manager (em) for the corre-

sponding VNF.

dbclient is responsible for creating an encrypted channel between the

PYNQ board and laptop, and setting up the required port forwarding be-

6http://www.pynq.io/board.html

Dynamic hardware-acceleration of VNFs in NFV environments 223

tween a user on the PYNQ board to the dst-server on the laptop. The user

and dst-server applications are the iperf client and server applications, re-

spectively.

Upon receiving a trigger from SSM, em sends SIGUSR1 signal to dbclient

process using the kill systen call. The signal handler in dbclient catches

SIGUSR1 signal and switches between the accelerated and non-accelerated

modes of Dropbear.

The SSM logic requires the resource usage information for all VNFs. To

this end, we deploy a container-based monitoring system called Cadvisor on

PYNQ. Cadvisor collects, aggregates and then exports the resource mon-

itoring information of all the running containers to a specific port. The

SSM scrapes this information from Cadvisor periodically and feeds it to

the SSM allocation algorithm. Upon processing this information, the SSM

sends GET requests to the em of appropriate VNFs in order to grant or release

accelerator resources.

Figure A.4: System implementation for allocation of AES and SHA accelerator
on PYNQ board.

A.3 Related works

The use of reconfigurable hardware accelerators has been explored for a

long time for several packet-processing applications [4] [5]. In an NFV en-

vironment, it is essential to accelerate the performance of specific VNFs

224 Appendix A

running by the means of external hardware accelerators. In [6], a frame-

work has been proposed to utilize FPGAs in order to implement complete

network functions in hardware. This framework allows to build VNFs based

on FPGA only and does not allow a VNF running on a CPU to offload se-

lected tasks to FPGA accelerators. Sharing of FPGA fabric among multiple

VNFs is accomplished by partial re-configuration technology. FPGAs pro-

vide high-level of programmability as compared to ASICs but they are still

expensive and less programmable as compared to COTS servers.

Li et al. have developed a dynamic hardware library (DHL), a library to

abstract FPGA-based accelerators for VNFs which can be accessed using a

set of APIs [7]. This work focused on easing the amount of effort to access

accelerators from VNFs.

Byma, et al. have proposed a framework that aggregates partial reconfig-

urable regions across multiple FPGAs to offer a single FPGA resource to

a cloud tenant who can program its allocated region. This framework is

useful for cloud service providers who would like to offer FPGAs just like

other compute resources [8].

OpenANFV is another such framework that works with OpenStack to man-

age and virtualize accelerator resources for VNFs requiring high-performance

packet processing requirements [9]. Nobach et al. also proposed an archi-

tecture for elastic provisioning of accelerators to VNFs [10]. A VNF can

offload selected workloads to accelerator hardware modules on-demand ba-

sis. However, this work does not discuss any implementation which can be

integrated within an NFV environment.

As accelerator resources are limited as compared to general-purpose com-

pute resources, there is a need to efficiently allocate them among different

network functions. Therefore, the challenge to dynamically allocate accel-

erator resources to VNFs needs to be addressed.

A.4 Evaluation and Results

We evaluate our implementation in two parts. In the first part, we com-

pare the performance of non-accelerated and accelerated VNFs in terms of

their peak throughput and %CPU usage. In the second part, we verify the

allocation algorithm by testing multiple VNFs with varying traffic patterns.

A.4.1 Comparison of original and hardware-accelerated
VNF

Table A.1 shows the peak throughput values of software-only and hardware-

accelerated SSH client VNFs. We have done this comparison using two types

Dynamic hardware-acceleration of VNFs in NFV environments 225

of ciphers– AES128 and AES256. The mac-algorithm used for hashing data

packets in our evaluations is SHA-256.

Table A.1: Comparison of software and hardware ciphers and hashes.

Algorithm Peak throughput (Mbps) %CPU
AES128-SHA256-sw 38.8 99
AES128-SHA256-hw 55.1 84.5
AES256-SHA256-sw 31.5 99
AES256-SHA256-hw 51 86

As AES256 involves more number of rounds than AES128, the peak

throughput of the SSH tunnel with AES256 cipher is less than the tunnel

using AES128 cipher. Moreover, one can notice a 42.1% improvement in

the throughput for hardware-accelerated AES128-SHA256 and 61.9% for

AES256-SHA256 over non-accelerated SSH clients. In addition to the im-

provement in the peak throughput, one can clearly see a reduction in %CPU

usage when the VNF is accelerated. This results from the fact that the CPU

is relieved from performing crypto-operations which are now offloaded to ac-

celerator cores.

The variation of %CPU utilization of the SSH client VNF with the chang-

ing data traffic on the tunnel is shown in Fig. A.5. As the traffic on the

tunnel increases, the %CPU usage also increases. The increase in %CPU

usage is because with the increase in the packet arrival rate the CPU spends

increasingly more time in performing cipher and hash operations.

Figure A.5: Variation of %CPU usage of SSH clients VNFS with changing
traffic for non-accelerated (sw) and accelerated modes (hw).

226 Appendix A

A.4.2 Dynamic accelerator allocation

The setup shown in Fig. A.4 is used to verify the operation of the accelera-

tor allocation algorithm. We evaluate our implementation by instantiating

dbclient VNFs and then loading them with time-varying traffic patterns.

VNFs were pre-configured to use AES-128 cipher and SHA-256 hash while

establishing SSH sessions with the SSH server. As a result of SSH port

forwarding, the configured ports on the PYNQ board are forwarded to the

laptop where the destination server is running. The home-user and desti-

nation server are the iperf client and server applications, respectively.

We start the experiment first by deploying two VNFs on the PYNQ board

and then loading them with data traffic from two users (iperf clients). Fig.

A.6(b) shows the time variation of the peak-throughput of two SSH tun-

nels. As the CPU usage of the first tunnel crosses the upper threshold (0.70)

value at t=12s (Fig. A.6(a)), the SSM triggers em1 to let VNF1 access the

accelerator resources. With access to the accelerator, the throughput of

tunn1 is improved and its CPU usage is also reduced (Fig. A.6(a)).

After a few seconds, we load the second tunnel (tunn2) with the traffic as

well. At this point in time, the CPU of both tunnels is higher than the

upper threshold value. However, the cumulative accelerator time for VNF2

is less than that of VNF1, because VNF1 was granted the accelerator in the

previous time period. Therefore, the SSM requests VNF1 to release the ac-

celerator and which is then granted to VNF2 for a time period of about 11s,

resulting in a switch-over shown at t=22s. Thereafter, the traffic remains

high on both tunnels such that their CPU usages are above the threshold

values, the SSM grants accelerator resources to two VNFs according to their

cumulative accelerator time resulting in a round-robin allocation. At accel-

erator switch-overs (t = 22s, 35s, 45s ..), accelerator access time for a VNF

is finished and the accelerator is allocated to the other VNF.

We repeat the above experiment for two more VNFs, such that there are

four concurrent SSH tunnels established between the PYNQ board and the

laptop. Each VNF corresponding to these tunnels has a CPU-share of 0.4.

All the four tunnels (tunn1-tunn4) are loaded with the data traffic and the

resulting throughput and CPU usage are observed. The average CPU usage

of all tunnels remains around 0.4 but a drop can be noticed during the time

intervals of hardware acceleration. In the Fig. A.6 (d), traffic variation for

four tunnels is shown. The traffic rate and the corresponding CPU usage of

the tunn2 are highlighted in red. It can be noticed that the CPU usage of

VNF2 is the lowest when it has the highest throughput during the follow-

ing time intervals – t=18-30, 55-67, 140-116. As the allocated accelerator

time for one VNF is completed, a new VNF with lowest cumulative accel-

erator time is allocated the accelerator. The accelerator allocation period

Dynamic hardware-acceleration of VNFs in NFV environments 227

(T=11s) for four tunnel and their switch-overs from one VNF to another

can be observed from Fig. A.6(d).

0 20 40 60 80 100 120 140
time (s)

0.0
0.2
0.4
0.6
0.8
1.0

%
C

P
U

 u
s
a
g
e

(a)

tunn2-cpu
tunn1-cpu

0 20 40 60 80 100 120 140
time (s)

15
20
25
30
35
40
45
50
55

T
h
r
o
u
g
h
p
u
t
 (

M
b
p
s
)

(b)

tunn2-traffic
tunn1-traffic

0 20 40 60 80 100 120 140
time (s)

0.0
0.1
0.2
0.3
0.4
0.5

%
C

P
U

 u
s
a
g
e

(c)
tunn1-cpu
tunn2-cpu
tunn3-cpu
tunn4-cpu

0 20 40 60 80 100 120 140
time (s)

5

10

15

20

25

T
h
r
o
u
g
h
p
u
t
 (

M
b
p
s
)

(d)

tunn1-traffic
tunn2-traffic
tunn3-traffic
tunn4-traffic

Figure A.6: Variation of (a), (c): CPU usage and (b), (d): traffic rate with time
corresponding to two and four concurrent SSH tunnels.

228 Appendix A

A.5 Conclusion

Hardware accelerators are increasingly becoming a part of NFV infrastruc-

ture to accelerate packet processing performance of VNFs such that SLAs

are met. A mechanism is required for the flexible and dynamic provisioning

of accelerator resources in an NFV scenario. The SSM is a NFV-MANO

component that is responsible for VNF management aspects including ac-

celerator de-allocation and allocation tasks. We made the following observa-

tion from the evaluation of our implementation of the accelerator allocation

scheme:

1. VNF’s throughput improvement and a reduction in over- all %CPU

usage is achieved by offloading AES and SHA operations to hardware

accelerator cores.

2. A dynamic provisioning of accelerator resources among multiple VNFs

can be achieved based on the real-time resource usage and cumulative

allocation times of VNFs.

3. The proposed accelerator allocation scheme complies with the ETSI’s

reference architecture for NFV.

This work can be extended by comparing the accelerator allocation algo-

rithm based on the performance profile of VNFs with the current reactive

approach.

A.6 Acknowledgments

This work was funded through NGPaaS (761557) and 5GTANGO (761493),

in the scope of the EC’s Horizon 2020 and 5G-PPP programs.

Dynamic hardware-acceleration of VNFs in NFV environments 229

References

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,

and R. Boutaba. Network function virtualization: State-of-the-art

and research challenges. IEEE Communications Surveys & Tutorials,

18(1):236–262, 2016.

[2] Xilinx. Zynq-7000 All Programmable SoC Technical Reference Manual,

v1.10 edition, 2015.

[3] Xilinx. Vivado Design Suite User Guide, v2014.1 edition, April 2014.

[4] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood.

Deep packet inspection using parallel bloom filters. In 11th Symposium

on High Performance Interconnects, 2003. Proceedings., pages 44–51.

IEEE, August 2003.

[5] A. Wicaksana and A. Sasongko. Fast and reconfigurable packet clas-

sification engine in FPGA-based firewall. In Proceedings of the 2011

International Conference on Electrical Engineering and Informatics,

pages 1–6, July 2011. doi:10.1109/ICEEI.2011.6021782.

[6] C. Kachris, G. C. Sirakoulis, and D. Soudris. Network Function Virtu-

alization based on FPGAs: A Framework for all-Programmable network

devices. CoRR, abs/1406.0309, August 2014. arXiv:1406.0309.

[7] X. Li, X. Wang, F. Liu, and H. Xu. DHL: Enabling Flexible Software

Network Functions with FPGA Acceleration. In 2018 IEEE 38th In-

ternational Conference on Distributed Computing Systems (ICDCS),

pages 1–11. IEEE, July 2018.

[8] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow. FP-

GAs in the cloud: Booting virtualized hardware accelerators with open-

stack. In 2014 IEEE 22nd Annual International Symposium on Field-

Programmable Custom Computing Machines, pages 109–116. IEEE,

May 2014.

[9] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and

X. Hu. OpenANFV: Accelerating network function virtualization with

a consolidated framework in openstack. In ACM SIGCOMM Computer

Communication Review, volume 44, pages 353–354. ACM, 2014.

[10] L. Nobach and D. Hausheer. Open, elastic provisioning of hardware

acceleration in nfv environments. In 2015 International Conference and

Workshops on Networked Systems (NetSys), pages 1–5. IEEE, March

2015.

B
Hardware accelerator aware VNF-chain

recovery

While Chapter 2 deals with the VNF-AAPC problem, accelerator-awareness

is required in VNF-chain recovery algorithms too. Otherwise, a failure in

the NFVi will result in an efficient resource allocation.

This appendix addresses the accelerator-aware VNF-chain recovery problem

using an ILP approach and a greedy heuristic. The accelerator-aware VNF-

chain recovery problem extends the VNF-AAPC problem in Chapter 2 by

adding prioritization to the VNF-chain recovery process.

⋆ ⋆ ⋆

G.P. Sharma, W. Tavernier, D. Colle, and M. Pickavet

Published in the Proceedings of the International Conference on

the Design of Reliable computer networks (DRCN), Milan, Italy

(virtual), 2020

Abstract Hardware accelerators in Network Function Virtualization (NFV)

environments have aided telecommunications companies (telcos) to reduce

their expenditures by offloading compute-intensive VNFs to hardware ac-

celerators. To fully utilize the benefits of hardware accelerators, VNF-chain

232 Appendix B

recovery models need to be adapted. In this paper, we present an ILP model

for optimizing the prioritized recovery of VNF-chains in heterogeneous NFV

environments following node failures. We also propose an accelerator-aware

heuristic for solving prioritized VNF-chain recovery problems of large size in

a reasonable time. Evaluation results show that the performance of heuris-

tic matches with that of ILP in regard to restoration of high and medium

priority VNF-chains and a small penalty occurs only for low-priority VNF-

chains.

B.1 Introduction

In the past few years, an exponential growth of internet data traffic has

taken place due to the explosion in the total number of the connected-users

and network services. This change has compelled telecommunications com-

panies (telcos) to look for alternative network-architecture solutions which

are more economical, manageable and scalable. Network Function Virtual-

ization (NFV) proposes to transform the manner in which network services

are currently created and managed by leveraging Information Technology

(IT) virtualization technologies for network services. With NFV, services

that were earlier implemented using proprietary hardware appliances (mid-

dleboxes) can now be created using virtual network functions (VNFs) or

Cloud-native Network Functions (CNFs). As a result, telcos can signifi-

cantly reduce their capital expenditures (CAPEX) by running VNFs (or

CNFs) on commercial-off-the-shelf (COTS) servers (e.g. x86 or ARM) in-

stead of purchasing costly middleboxes.

In the recent past, hardware accelerators like Graphics Processing Units

(GPUs), smartNICs and Field Programmable Gate Arrays (FPGAs) are

also being included in the NFV infrastructure (NFVi) to address the perfor-

mance issues with VNFs [1]. Hardware accelerators can offload the compute-

intensive tasks from a VNF running on the CPU resulting in a speedup of

execution. This packet-processing offload also frees-up CPU cores which

can be used to run other VNFs resulting in better server consolidation.

In order to truly exploit the benefits of NFV, it is essential to allocate NFVi

resources to VNFs as efficiently as possible. State-of-the-art (SotA) VNF

placement models and strategies only consider usual NFVi infrastructure

resources like compute, storage and network while making their allocation

decisions. This can lead to an inefficient allocation of NFVi resources in

heterogeneous NFVi which contain hardware accelerators along with the

usual NFVi resources.

The reliability of network services can be enhanced by utilizing hardware

accelerators to satisfy the diverse Quality of Service (QoS) requirements of

Hardware accelerator aware VNF-chain recovery 233

service chains. Therefore, QoS is not only impacted by the re-allocation of

usual NFVi resources (compute, storage and network) after a failure but

also by the hardware accelerator re-allocation. In the case of server node

failures, the VNF-chain recovery processes should also take into account the

presence of hardware accelerator resources in NFVi along with usual NFVi

resources. Moreover, VNF remapping and accelerator-allocation should be

able to prioritize traffic according to the QoS requirements. To the best of

our knowledge, no work has addressed this problem in the past.

To this end, we make the following contributions in this paper:

1. Modeling of the prioritized VNF-chain recovery problem in heteroge-

neous NFV environments using the Integer Linear Programming (ILP)

approach.

2. Designing the greedy-based heuristic algorithm to solve the above

problem.

3. Evaluations of the ILP and the heuristic algorithm.

The rest of the paper is organized as follows. The related work for

this paper is discussed in the next section. The problem of accelerator-

aware VNF-chain recovery problem is formulated using an ILP model in

section B.3. Afterward, a heuristic to solve VNF-chain recovery problem is

presented in section B.4. Section B.5 describes the evaluation of the ILP

and the heuristic. Finally, the conclusion of the paper is presented in section

B.6.

B.2 Related Works

With the growing interest in NFV among industry and academia, various

studies have been carried out related to the modeling of resource allocation

in NFV. The authors in [2] defined the VNF placement and routing opti-

mization problem and devised a mixed-ILP (MILP) formulation for it. Bari

et al. also modeled the VNF Orchestration Problem (VNF-OP) using ILP

approach [3]. They proposed a dynamic programming approach to solve

VNF-OP instances with larger sizes. The authors in [4] have proposed a

Uniform Hardware Acceleration Deployment architecture (UHAD) for sim-

plifying the integration of hardware accelerators in NFVi.

In [5], the authors studied the problem of allocating backup resources for

VNFs and virtual-links such that reliability constraints of service-chains

are adhered. A scalable heuristic algorithm, aimed at sharing backup re-

sources in order to reduce overhead costs due to backups, was also proposed.

234 Appendix B

A. Tomassilli et al. investigated two different (dedicated and shared) pro-

tection mechanisms for reliable chaining of VNFs in case of a single-link

failure [6]. The evaluation of the ILP models shows that the dedicated

protection scheme requires 40% more bandwidth and 60% more processing

resources as compared to the shared protection scheme. A study regard-

ing service reliability using VNF migration and replications was conducted

in [7]. The authors recommended jointly performing VNF migration and

replication in order to efficiently utilize server and link resources. An algo-

rithm is also proposed for optimizing the provisioning of hardware accelera-

tors in NFVi nodes. We also proposed a scheme for the dynamic allocation

of hardware accelerators to VNFs in NFV environments by the use of spe-

cific service managers (SSMs) [8].

Although numerous resource allocation models have been proposed aiming

at optimizing various parameters like cost, performance, load-balancing,

etc, there has been little focus on prioritized VNF-chain placement mod-

els for heterogeneous NFV environments. In [9], the authors addressed the

problem of joint scaling, placement and routing for heterogeneous services.

They presented an MILP approach for single-step exact solutions along with

a heuristic algorithm for fast and near-optimum solutions. We formulated

the accelerator-aware VNF placement problem in the form of an ILP and

also proposed a scalable algorithm based on best-fit heuristic [10].

In summary, the challenge of prioritized VNF-chain recovery in a heteroge-

neous environment in case of server node failures still remains unaddressed.

B.3 Problem Formulation

The description of various parameters and decision variables involved in the

ILP formulation is given in Table B.1.

The objective of this ILP formulation is to maximize the total amount of

traffic restored after a failure subject to the resource capacity. In addition

to that, restoration is prioritized based on the traffic class of VNF-chains.

In the objective function (B.1), xs is the decision variable indicating if the

VNF-chain s is restored after the failure. The product µsxs denotes the

amount of traffic restored after the recovery of VNF-chain s. The scaling

factor µs in the objective function is the cost-gain for restoring a service-

chain s ∈ S. The prioritization of VNF-chains is performed by calculating

µs of VNF-chains based on their respective traffic class as explained below.

Depending on the traffic class of VNF-chains, all VNF-chains are categorized

into three sets, namely– high-priority (SI ⊆ S), medium-priority (SII ⊆ S)

and the low-priority (SIII ⊆ S) VNF-chains. After any node-failure in

NFVi, the preference for restoration is given to VNF-chains s ∈ S in the

Hardware accelerator aware VNF-chain recovery 235

following order: first for s ∈ SI , then for s ∈ SII , and at last for s ∈ SIII .

The requirement to prioritize VNF-chain restoration can be implemented

by adding soft constraints to the ILP formulation. This is done through the

assignment of restoration gain µs for each VNF-chain s as indicated in (B.2).

Here TII and TIII can be evaluated using (B.3). By scaling the throughput

values of traffic (xsts) for each VNF-chain request with a restoration-gain

value µs, we have avoided the requirement for adding hard constraints with

regards to prioritized restoration of traffic.

obj : max
∑

s∈S

tsµsxs (B.1)

µsIII = 1, µsII tsII = TIII , µsI tsI = TII + TIII

∀sIII ∈ SIII , sII ∈ SII , sI ∈ SI

(B.2)

TIII =
∑

s∈SIII

µsts, TII =
∑

s∈SII

µsts (B.3)

B.3.1 Node constraints

For each server node n ∈ N , the total number of CPU cores utilized by all

VNFs placed on n is constrained by the number of cores available on it as

indicated in (B.4). The constraint on resources available on the hardware

accelerator fabric for the instantiation of accelerators is shown in (B.5).

Constraint in (B.6) ensures that the PCIe bandwidth required for com-

munication between VNFs and accelerators does not exceed the available

bandwidth.

∑

s∈S,fs∈F s

αn
fscpu0(f

s)− βn
fscpur(f

s) ≤ Rcpu(n) ∀n ∈ N (B.4)

∑

a∈A

r(a)δna ≤ Racc(n) ∀n ∈ N (B.5)

∑

s∈S,fs∈F s

2tsβ
n
fs ≤ Rbus(n) ∀n ∈ N (B.6)

B.3.2 Acceleration constraints

The constraint in (B.7) is a consequence of the fact that a VNF fs can

only be allocated an accelerator on n if the fs is placed on n. Also, binary

decision variable δna is assigned a value of 1 if atleast one VNF is allocated

accelerator a on n as indicated in (B.8). This constraint can be linearized by

236 Appendix B

Table B.1: Description of parameters and decision variables

Input parameters

Notation Description
N Set of all non-failed computational nodes within

NFVi.
Rcpu(n) Maximum CPU resources (cores) available on n ∈

N .
Racc(n) Maximum accelerator fabric resources (logic ele-

ments) available on n ∈ N .
Rbus(n) Maximum bandwidth (Gbps) of the PCIe bus of

node n ∈ N .
A Set of all available accelerator types.

r(a) Resource requirement (logic elements) of the ac-
celerator type a ∈ A.

S Set of all service requests, including top (SI),
medium (SII) and low (SIII) priority services.

F s Set of all VNFs corresponding to the service-chain
request s ∈ S.

ts Throughput requirement (Gbps) of the service re-
quest s ∈ S.

cpu0(f
s) CPU requirement (cores) of VNF f of the service

request s ∈ S.
cpur(f

s) CPU reduction (cores) for VNF f of the service
request s ∈ S.

atype(fs) Type of accelerator needed for acceleration of
VNF f of the service request s ∈ S.

Decision variables
Notation Description

xs Binary decision variable indicates if the service
s ∈ S is restored after the failure.

αn
fs Binary variable indicates if VNF f of service re-

quest s is placed on n after the failure.
βn
fs Binary variable indicates if VNF f of service re-

quest s is accelerated on n after the failure.
δna Binary variable indicates if accelerator of type a

is instantiated on the node n after the failure.

Hardware accelerator aware VNF-chain recovery 237

the re-formulation shown in (B.9a-B.9b). If no VNF is allocated accelerator

a on n, (B.9a) forces δna to be equal to zero. Conversely, if atleast one VNF

is assigned accelerator a on n, LHS of (B.9b) is ≥ 1 resulting in δna to take

a value 1. The factor M1 in the RHS of (B.9b) is a constant greater than

the total number of VNFs in all VNF-chains, i.e., M1 =
∑

∀s∈S
∀fs∈F s

1.

βn
fs ≤ αn

fs ∀n ∈ N, ∀s ∈ S, ∀fs ∈ F s (B.7)

δna =











1, if
∑

∀s∈S,∀fs∈F s,
a=atype(fs)

βn
fs ≥ 1

0, otherwise

∀n ∈ N, ∀a ∈ A (B.8)

δna ≤
∑

∀s∈S,∀fs∈F s

a=atype(fs)

βn
fs ∀a ∈ A, ∀n ∈ N (B.9a)

∑

∀s∈S,∀fs∈F s

a=atype(fs)

βn
fs ≤ M1δ

n
a ∀a ∈ A, ∀n ∈ N (B.9b)

B.3.3 Other Constraints

A VNF-chain is said to be restored if all the VNFs constituting the VNF-

chain are placed on computational nodes. This requirement is expressed

by a set of constraints given in (B.10). This constraint can be linearized

using the method discussed before for linearizing the constraint in (B.8).

Constraints in (B.11) force binary variables xs, α
n
fs , βn

fs , δna to only take

binary values (0 or 1).

xs =







1, if
∑

∀n∈N

αn
fs = 1, ∀fs ∈ Fc

0, otherwise
∀s ∈ S (B.10)

xs, α
n
fs , βn

fs , δna ∈ {0, 1} ∀n ∈ N, ∀s ∈ S, ∀fs ∈ F s (B.11)

B.4 Proposed Algorithm

The algorithm we propose to solve the prioritized VNF-chain recovery prob-

lem is based on the greedy heuristic. The pseudo-code for the algorithm is

presented in Alg. B.1. The algorithm takes as an input the following: a list

of all VNF-chains S, a list of non-broken chains S′ = {s ∈ S : xs = 1}),

VNF assignments (α) before failure, accelerator allocations (β) before fail-

ure and a set of all non-failed server nodes (N) with their respective resource

238 Appendix B

usages.

A sorted list Sb of all broken chains in the order of their decreasing priori-

ties, which is based on their µs values is created. Also, a list of all chains

Srev in increasing priority is created.

For accelerator-agnostic VNF-chain recovery, placement decisions are ag-

nostic to the availability of accelerators. As a result, placement decisions

are based solely on CPU resources and accelerator-allocation is done only if

hardware accelerator resources are available on that node. In other words,

no explicit effort is made by the heuristic to allocate an accelerator to a VNF

resulting in an inefficient resource utilization. The algorithm for accelerator-

agnostic VNF-chain recovery does not contain lines (9-15) of Alg. B.1.

With accelerator-aware allocation, the decision for accelerator allocation is

decoupled from other placement decisions. As opposed to the accelerator-

agnostic placement, accelerator-aware placement makes use of accelVNF

procedure for the explicit allocation of an accelerator to a VNF. The pseudo-

code for accelVNF procedure is shown in Alg. B.2. First, it is checked if

enough resources are available on any server node with an attached hardware

accelerator by using AccAlloc procedure. If not, a node with a hardware

accelerator is randomly selected (na) from a list (Na) of server nodes with

hardware accelerator sorted in the order of increasing available CPU. To

accommodate fs on na, CPU, bus or accelerator resources are made avail-

able by removing VNFs of the lowest priority VNF-chain if the priority of

VNF-chain s is more than sb. A VNF-chain is selected in-order from Sb

for its restoration and the set of non-placed VNFs is assigned to F b. For

every VNF f b which has an accelerator implementation available in A, its

placement is first tried on a server node with hardware accelerator available

using the procedure accelVNF (Alg. B.2). If procedure accelVNF returns

None, its placement is continued as usual.

If not enough CPU resources are available on any server node, VNF-chains

are removed sequentially in the greedy manner i.e. lower-priority chain first

from Srev. The removed VNF-chain sr is added to the sorted-list of the

broken chain Sb and resources are updated using the RemoveVNFs proce-

dure. In the case when all VNFs of sb are placed successfully, S′ is updated

and the next VNF-chain with the lower priority is considered for recovery.

At the end of the algorithm, S′ contains all the VNF-chains which have all

their VNFs restored.

Hardware accelerator aware VNF-chain recovery 239

Algorithm B.1: VNF-chain recovery algorithm

Input : S, S′, α, β, N
Output: S′

1 Sb ← sorted list of broken chains in decreasing priorities;
2 Srev ← sorted list of chains in increasing priorities;
3 ib, ir ← 0;
4 l← 0;
5 while ib < |Sb| do
6 sb ← Sb[ib];
7 Fb ← {f

s ∈ F sb : VNFs in F sb which are not placed};
8 fail← False;

9 for f b in Fb do

10 if atype(f b)∈ A then

11 na ← accelVNF(f b, N);
12 if na ̸= None then

13 α[f b], β[f b]← na, na;
14 break;

15 np ← argmax
n∈N

Rcpu(n) ;

16 while cpu0(f
b) > Rcpu(n) and ir ≤ |Srev| do

17 sr ← Srev[ir];
18 if ChainPrior(sb)>ChainPrior(sr) then

19 RemoveVNFs(F b);
20 np ← argmax

n∈N

Rcpu(n) ;

21 ir ← ir + 1;

22 else

23 break;

24 if cpu0(f
b) > Rcpu(np) then

25 α[f b]← np;
26 else

27 fail← True;
28 break

29 if fail == True then

30 RemoveVNFs(F b);
31 else

32 S′ ← S′ ∪ sb;

33 ib ← ib + 1;

34 end

B.5 Evaluation

The ILP model for accelerator-aware VNF-chain recovery problem is im-

plemented in the CPLEX (v12.9) framework using the doCPLEX Python

240 Appendix B

Algorithm B.2: VNF accelerator allocation procedure

1 Procedure accelVNF(fs, N):

2 Na ← sorted list of nodes N with accelerator in increasing CPU;
3 for na in Na do

4 if AccAlloc(fs, na)== True then

5 return na;

6 na ← RandomChoice(Na);
7 if cpu0(f

s)− cpur(f
s) > Rcpu(na) then

8 sb ← lowest priority chain with atleast one VNF placed on na.;
9 if ChainPrior(s)>ChainPrior(sb) then

10 RemoveVNFs({fsb ∈ Fsb : α[fsb] = na});

11 if 2ts > Rcpu(na) or r(atype(fs)) > Racc(na) then
12 sb ← lowest priority chain with atleast one VNF allocated

accelerator on na.;
13 if ChainPrior(s)>ChainPrior(sb) then

14 RemoveVNFs({fsb ∈ Fsb : α[fsb] = na});

15 if AccAlloc(fs, na)== True then

16 return na;
17 else

18 return None;

19 end

Hardware accelerator aware VNF-chain recovery 241

API [11] and the heuristic algorithm proposed in Alg. B.1 is implemented

in Python. In this section, we describe the evaluations carried out in order

to assess the efficiency of the ILP and the heuristic with regard to the VNF-

chain recovery problem. First, the placement and accelerator allocation of

VNFs is performed by using the heuristic which we proposed in [10]. The

result of this heuristic is used as an input allocation for both the ILP and

heuristic. A fixed number of server nodes are chosen at random from all

the server nodes to cause the failure. In order to highlight the impact of

accelerator-allocation criterion on the traffic restoration, we compared the

performance of accelerator-agnostic and accelerator-aware heuristics.

These evaluations were carried on a machine with Intel Xeon CPU and

16GB of memory running Ubuntu 16.04. Table B.2 describes the value (or

range) of various parameters involved in evaluations of ILP and heuristic.

Table B.2: Description of parameters and decision variables

Parameter Value or range Parameter Value or range
| S | 15, 150 co(f

c) 3-5
Rcpu(n) 20-28 ci(f

c) (0.40 - 0.60)co(f
c)

Racc(n) 0,1 fvnf
acc , fn

acc 0.20
Rbus(n) 80-120 (Gbps) accel. type a1 a2 a3

Chain length 4 accel. size 0.40 0.28 0.30
ts 1.0-5.0 (Gbps) traffic class I II III

Prob. 0.10 0.20 0.70

B.5.1 Execution time

The comparison of maximum execution times for the ILP model and heuris-

tic method with a single-node failure is shown in Table B.3. As expected,

the computational time for the ILP model increases rapidly with the num-

ber of VNF-chains. This becomes an issue, especially for the case when the

total number of VNF-chains is greater than 15 and execution time for the

ILP becomes orders of magnitude higher than that of heuristic. Therefore,

solving VNF-chain recovery for problem instances of large-sizes becomes in-

feasible using the ILP model. However, the heuristic method can be used

for larger problems as discussed in the next section.

B.5.2 ILP and Heuristic comparison

Here, we compare the average amount of traffic lost following node fail-

ures for each priority class without any traffic-recovery scheme with the

242 Appendix B

Table B.3: Comparison of maximum execution time for ILP model and heuristic
algorithm

Total chains (| S |) ILP time Heuristic time
10 230 ms 1.3 ms
15 350 ms 1.8 ms
20 > 100 s 3 ms

amount of traffic lost after running the ILP-based traffic recovery model

and heuristic approach. The comparison of traffic-lost for the single-node

and multi-node failure is depicted in Fig. B.1 and B.2 with an input of 15

chains.

As expected an exact approach like ILP always has the minimum amount

of lost traffic. However, it can be observed that the performance of the

heuristic is close to the ILP method. For VNF-chains of high and medium

priorities amount of traffic lost is equal with ILP and heuristic approach.

The amount of traffic lost for the lowest priority with the heuristic is not

more than 15% as that of ILP in all cases. Moreover, the proposed heuristic

can be used to solve the problem instances of large sizes.

I II III
traffic class

0

5

10

15

20

25

%
 to

ta
l l

os
t t

ra
ffi

c
(G

bp
s)

No recovery
With recovery (ILP)
With recovery (heuristic)

Figure B.1: Performance comparison of ILP and heuristic for a single node
failure in terms of lost traffic.

B.5.3 Impact of accelerator allocation criterion

In order to highlight the impact of accelerator-allocation on the amount of

lost traffic, we compare the performance of the accelerator-agnostic heuris-

Hardware accelerator aware VNF-chain recovery 243

I II III
traffic class

0

10

20

30

40

50
%

 to
ta

l l
os

t t
ra

ffi
c

(G
bp

s)
No recovery
With recovery (ILP)
With recovery (heuristic)

Figure B.2: Performance comparison of ILP and heuristic for multi-node (three)
failure in terms of lost traffic.

tic with our heuristic as depicted in Fig. B.3 with an input consisting of

150 chains.

As the higher-priority VNF-chains are restored equally by both ILP and

heuristic, we focused only on the lowest-priority traffic. It can be observed

that with the accelerator-aware heuristic about 30% of more traffic can be

restored as compared to the accelerator-agnostic heuristic. This can be ex-

plained by the fact that a better VNF consolidation is achieved with the

accelerator-aware heuristic in contrast with the accelerator-agnostic heuris-

tic.

B.6 Conclusion

Advantages of integrating hardware accelerators in NFVi include perfor-

mance speed-ups and cost savings due to the reduction in VNF CPU usage.

In order to minimize losses incurred to telcos due to failures in heteroge-

neous NFV environments, VNF-chain recovery models need to be modified.

This paper presented an ILP formulation to model the accelerator-aware,

prioritized VNF-chain recovery problems.

As the execution time for exact methods like ILP is high, a greedy-based

heuristic is introduced to solve larger instances of this problem. The perfor-

mance of the heuristic is on par with ILP as far as the restoration of high

and medium priority VNF-chains is concerned, with a slight penalty only for

low-priority VNF-chains. The evaluation also shows that the performance

244 Appendix B

3 4 5 6
failed # of nodes

0

2

4

6

8

10

12
%

 to
ta

l l
os

t t
ra

ffi
c

(G
bp

s)
After recovery (accel-agnostic)
After recovery (accel-aware)

Figure B.3: Impact of accelerator allocation on the heuristic performance in
terms of lost traffic.

of accelerator-aware heuristic is 30% better than the accelerator-agnostic

heuristic in terms of the total amount of traffic lost.

For future work, we would investigate the availability of VNF-chains hard-

ware accelerators along with usual reliability parameters like VNF and

server node reliabilities.

B.7 Acknowledgments

This work was funded through NGPaaS, under the grant number 761557, in

the scope of the European Commission Horizon 2020 and 5G-PPP programs.

Hardware accelerator aware VNF-chain recovery 245

References

[1] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zin-

ner, R. Bifulco, M. Jarschel, and G. Bianchi. Survey of Performance

Acceleration Techniques for Network Function Virtualization. Proceed-

ings of the IEEE, 107(4):746–764, 2019.

[2] B. Addis, D. Belabed, M. Bouet, and S. Secci. Virtual network func-

tions placement and routing optimization. In 2015 IEEE 4th Interna-

tional Conference on Cloud Networking (CloudNet), pages 171–177.

IEEE, 2015.

[3] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. On orches-

trating virtual network functions. In 2015 11th International Conference

on Network and Service Management (CNSM), pages 50–56, Nov 2015.

doi:10.1109/CNSM.2015.7367338.

[4] H. Fan, Y. Hu, S. Zhang, and Q. Ren. Hardware Acceleration Resource

Allocation Mechanism for VNF. Procedia computer science, 131:746–

755, 2018.

[5] M. T. Beck, J. F. Botero, and K. Samelin. Resilient allocation of

service Function chains. In 2016 IEEE Conference on Network Function

Virtualization and Software Defined Networks (NFV-SDN), pages 128–

133, Nov 2016. doi:10.1109/NFV-SDN.2016.7919487.

[6] A. Tomassilli, N. Huin, F. Giroire, and B. Jaumard. Resource require-

ments for reliable service function chaining. In 2018 IEEE International

Conference on Communications (ICC), pages 1–7. IEEE, 2018.

[7] F. Carpio and A. Jukan. Improving reliability of service function

chains with combined vnf migrations and replications. arXiv preprint

arXiv:1711.08965, 2017.

[8] G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet. Dynamic

Hardware-Acceleration of VNFs in NFV Environments. In 2019 Sixth

International Conference on Software Defined Systems (SDS), pages

254–259. IEEE, 2019.

[9] S. Dräxler and H. Karl. SPRING: Scaling, Placement, and Routing of

Heterogeneous Services with Flexible Structures. In 2019 IEEE Confer-

ence on Network Softwarization (NetSoft), pages 115–123. IEEE, 2019.

246 Appendix B

[10] G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet. VNF-

AAP: Accelerator-aware Virtual Network Function Placement. work-

ing paper or preprint, September 2019. Available from: https://hal.

archives-ouvertes.fr/hal-02292930.

[11] IBM. IBM ILOG CPLEX Optimization Studio. Available from: https:

//www.ibm.com/analytics/cplex-optimizer.

https://hal.archives-ouvertes.fr/hal-02292930
https://hal.archives-ouvertes.fr/hal-02292930
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer

	Front cover
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Samenvatting
	Summary
	Introduction
	Networking Overview
	Network Function Virtualization
	Softwarized Network Functions
	ETSI NFV architecture
	Hardware-accelerated VNFs

	Software Defined Networking
	Media-over-IP and Media Function Virtualization
	IP Media
	Media Function Virtualization

	Deterministic Networking
	QoS in Packet-switched Networks
	Time Sensitive Networking
	DetNet

	Outline and Research contributions
	Service Deployment
	Scheduling algorithms
	Chapter Ordering

	Publications
	Publications in international journals (listed in the Science Citation Index The publications listed are recognized as ‘A1 publications’, according to the following definition used by Ghent University: A1 publications are articles listed in the Science Citation Index Expanded, the Social Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of Science, restricted to contributions listed as article, review, letter, note or proceedings paper.)
	Publications in other international journals
	Publications in international conferences (listed in the Science Citation Index The publications listed are recognized as ‘P1 publications’, according to the following definition used by Ghent University: P1 publications are proceedings listed in the Conference Proceedings Citation Index - Science or Conference Proceedings Citation Index - Social Science and Humanities of the ISI Web of Science, restricted to contributions listed as article, review, letter, note or proceedings paper, except for publications that are classified as A1.)
	Publications in other international conferences

	References

	VNF-AAPC: Accelerator-aware VNF Placement and Chaining
	Introduction
	Hardware-acceleration in NFV
	VNF hardware-acceleration example
	Trade-offs

	Related Works
	Problem Overview
	ILP Formulation
	Objective
	Constraints
	Physical Node Constraints
	Physical link constraints
	Accelerator constraints
	Auxiliary Constraints

	Proposed Heuristics
	Accelerator-agnostic VNF-PC heuristic
	Accelerator-aware VNF-PC heuristic

	Performance evaluation
	Setup and Parameters
	Comparison of ILP and Heuristic
	VNF-PC Heuristic Comparison

	Overall cost analysis

	Conclusion
	Acknowledgments
	References

	On Decomposition and Deployment of Virtualized Media Services
	Abstract
	Introduction
	Background and Related Works
	Media Transport
	Media Decomposition

	Virtualized Media Processing

	System Model
	VMF-FG Decomposition
	VMF-FG Deployment
	Next-fit Approach
	k-cut Approach

	Evaluation
	Simulation settings
	Acceptance ratio
	Resource reservation
	Resource utilization
	End-to-end Hops

	Conclusion
	Acknowledgments
	References

	Scheduling for Media Function Virtualization
	Introduction
	Related Works
	System Model and Algorithm
	System Model
	VMF-FG Scheduling Algorithm

	Evaluations
	Evaluation setup
	End-to-end Delay
	Impact of formats

	Conclusion
	Acknowledgments
	References

	Routing and Scheduling for 1+1 Protected DetNet flows
	Introduction
	CSQF and 1+1 protection
	Related Works
	System Model and ILP Formulation
	ILP Formulation

	Heuristics
	Greedy Heuristic
	Tabu-search Heuristic

	Evaluation and Results
	Setup and Parameters
	Performance and Calculation time Trade-off
	Heuristic Performance
	Impact of Tc

	Conclusion
	Acknowledgements
	References

	End-to-end Scheduling for Wired-wireless Mixed Networks
	Introduction
	Related Works
	Problem Statement
	Model Description
	Wireless link Modeling
	Problem Definition

	ILP formulation
	Constraints
	Objective function

	Heuristic
	Evaluations
	Evaluation setup
	Results
	ILP and GRD Comparison
	GRD criteria
	Wireless Requests Scheduling

	Conclusion
	Acknowledgements
	References

	Conclusion
	Virtualized Service Deployment Algorithms
	Research Contributions
	Future Directions

	Packet Scheduling Algorithms
	Research Contributions
	Future Directions

	References

	Dynamic hardware-acceleration of VNFs in NFV environments
	Introduction
	System Architecture and Implementation
	Service Specific Manager and NFV processes
	Accelerator allocation algorithm in SSM
	AES and SHA Acceleration in Dropbear
	Complete System and Implementation

	Related works
	Evaluation and Results
	Comparison of original and hardware-accelerated VNF
	Dynamic accelerator allocation

	Conclusion
	Acknowledgments
	References

	Hardware accelerator aware VNF-chain recovery
	Introduction
	Related Works
	Problem Formulation
	Node constraints
	Acceleration constraints
	Other Constraints

	Proposed Algorithm
	Evaluation
	Execution time
	ILP and Heuristic comparison
	Impact of accelerator allocation criterion

	Conclusion
	Acknowledgments
	References

